
Factory Boy Documentation
Release 2.6.0

Raphaël Barrois, Mark Sandstrom

Mar 08, 2017

Contents

1 Links 3

2 Download 5

3 Usage 7
3.1 Defining factories . 7
3.2 Using factories . 8
3.3 Realistic, random values . 8
3.4 Lazy Attributes . 8
3.5 Sequences . 9
3.6 Associations . 9
3.7 Debugging factory_boy . 10
3.8 ORM Support . 10

4 Contributing 11

5 Contents, indices and tables 13
5.1 Introduction . 13
5.2 Reference . 17
5.3 Using factory_boy with ORMs . 41
5.4 Common recipes . 48
5.5 Fuzzy attributes . 54
5.6 Examples . 59
5.7 Internals . 62
5.8 ChangeLog . 62
5.9 Ideas . 70

Python Module Index 71

i

ii

Factory Boy Documentation, Release 2.6.0

factory_boy is a fixtures replacement based on thoughtbot’s factory_girl.

As a fixtures replacement tool, it aims to replace static, hard to maintain fixtures with easy-to-use factories for complex
object.

Instead of building an exhaustive test setup with every possible combination of corner cases, factory_boy allows
you to use objects customized for the current test, while only declaring the test-specific fields:

class FooTests(unittest.TestCase):

def test_with_factory_boy(self):
We need a 200C, paid order, shipping to australia, for a VIP customer
order = OrderFactory(

amount=200,
status='PAID',
customer__is_vip=True,
address__country='AU',

)
Run the tests here

def test_without_factory_boy(self):
address = Address(

street="42 fubar street",
zipcode="42Z42",
city="Sydney",
country="AU",

)
customer = Customer(

first_name="John",
last_name="Doe",
phone="+1234",
email="john.doe@example.org",
active=True,
is_vip=True,
address=address,

)
etc.

factory_boy is designed to work well with various ORMs (Django, Mogo, SQLAlchemy), and can easily be extended
for other libraries.

Its main features include:

• Straightforward declarative syntax

• Chaining factory calls while retaining the global context

• Support for multiple build strategies (saved/unsaved instances, stubbed objects)

• Multiple factories per class support, including inheritance

Contents 1

http://github.com/thoughtbot/factory_girl

Factory Boy Documentation, Release 2.6.0

2 Contents

CHAPTER 1

Links

• Documentation: http://factoryboy.readthedocs.org/

• Repository: https://github.com/rbarrois/factory_boy

• Package: https://pypi.python.org/pypi/factory_boy/

factory_boy supports Python 2.6, 2.7, 3.2 and 3.3, as well as PyPy; it requires only the standard Python library.

3

http://factoryboy.readthedocs.org/
https://github.com/rbarrois/factory_boy
https://pypi.python.org/pypi/factory_boy/

Factory Boy Documentation, Release 2.6.0

4 Chapter 1. Links

CHAPTER 2

Download

PyPI: https://pypi.python.org/pypi/factory_boy/

$ pip install factory_boy

Source: https://github.com/rbarrois/factory_boy/

$ git clone git://github.com/rbarrois/factory_boy/
$ python setup.py install

5

https://pypi.python.org/pypi/factory_boy/
https://github.com/rbarrois/factory_boy/

Factory Boy Documentation, Release 2.6.0

6 Chapter 2. Download

CHAPTER 3

Usage

Note: This section provides a quick summary of factory_boy features. A more detailed listing is available in the full
documentation.

Defining factories

Factories declare a set of attributes used to instantiate an object. The class of the object must be defined in the model
field of a class Meta: attribute:

import factory
from . import models

class UserFactory(factory.Factory):
class Meta:

model = models.User

first_name = 'John'
last_name = 'Doe'
admin = False

Another, different, factory for the same object
class AdminFactory(factory.Factory):

class Meta:
model = models.User

first_name = 'Admin'
last_name = 'User'
admin = True

7

Factory Boy Documentation, Release 2.6.0

Using factories

factory_boy supports several different build strategies: build, create, and stub:

Returns a User instance that's not saved
user = UserFactory.build()

Returns a saved User instance
user = UserFactory.create()

Returns a stub object (just a bunch of attributes)
obj = UserFactory.stub()

You can use the Factory class as a shortcut for the default build strategy:

Same as UserFactory.create()
user = UserFactory()

No matter which strategy is used, it’s possible to override the defined attributes by passing keyword arguments:

Build a User instance and override first_name
>>> user = UserFactory.build(first_name='Joe')
>>> user.first_name
"Joe"

It is also possible to create a bunch of objects in a single call:

>>> users = UserFactory.build_batch(10, first_name="Joe")
>>> len(users)
10
>>> [user.first_name for user in users]
["Joe", "Joe", "Joe", "Joe", "Joe", "Joe", "Joe", "Joe", "Joe", "Joe"]

Realistic, random values

Tests look better with random yet realistic values. For this, factory_boy relies on the excellent fake-factory library:

class RandomUserFactory(factory.Factory):
class Meta:

model = models.User

first_name = factory.Faker('first_name')
last_name = factory.Faker('last_name')

>>> UserFactory()
<User: Lucy Murray>

Lazy Attributes

Most factory attributes can be added using static values that are evaluated when the factory is defined, but some
attributes (such as fields whose value is computed from other elements) will need values assigned each time an instance
is generated.

8 Chapter 3. Usage

https://pypi.python.org/pypi/fake-factory

Factory Boy Documentation, Release 2.6.0

These “lazy” attributes can be added as follows:

class UserFactory(factory.Factory):
class Meta:

model = models.User

first_name = 'Joe'
last_name = 'Blow'
email = factory.LazyAttribute(lambda a: '{0}.{1}@example.com'.format(a.first_name,

→˓ a.last_name).lower())

>>> UserFactory().email
"joe.blow@example.com"

Sequences

Unique values in a specific format (for example, e-mail addresses) can be generated using sequences. Sequences are
defined by using Sequence or the decorator sequence:

class UserFactory(factory.Factory):
class Meta:

model = models.User

email = factory.Sequence(lambda n: 'person{0}@example.com'.format(n))

>>> UserFactory().email
'person0@example.com'
>>> UserFactory().email
'person1@example.com'

Associations

Some objects have a complex field, that should itself be defined from a dedicated factories. This is handled by the
SubFactory helper:

class PostFactory(factory.Factory):
class Meta:

model = models.Post

author = factory.SubFactory(UserFactory)

The associated object’s strategy will be used:

Builds and saves a User and a Post
>>> post = PostFactory()
>>> post.id is None # Post has been 'saved'
False
>>> post.author.id is None # post.author has been saved
False

Builds but does not save a User, and then builds but does not save a Post
>>> post = PostFactory.build()
>>> post.id is None

3.5. Sequences 9

Factory Boy Documentation, Release 2.6.0

True
>>> post.author.id is None
True

Debugging factory_boy

Debugging factory_boy can be rather complex due to the long chains of calls. Detailed logging is available through
the factory logger.

A helper, factory.debug(), is available to ease debugging:

with factory.debug():
obj = TestModel2Factory()

import logging
logger = logging.getLogger('factory')
logger.addHandler(logging.StreamHandler())
logger.setLevel(logging.DEBUG)

This will yield messages similar to those (artificial indentation):

BaseFactory: Preparing tests.test_using.TestModel2Factory(extra={})
LazyStub: Computing values for tests.test_using.TestModel2Factory(two=

→˓<OrderedDeclarationWrapper for <factory.declarations.SubFactory object at 0x1e15610>
→˓>)

SubFactory: Instantiating tests.test_using.TestModelFactory(__containers=(
→˓<LazyStub for tests.test_using.TestModel2Factory>,), one=4), create=True

BaseFactory: Preparing tests.test_using.TestModelFactory(extra={'__containers': (
→˓<LazyStub for tests.test_using.TestModel2Factory>,), 'one': 4})

LazyStub: Computing values for tests.test_using.TestModelFactory(one=4)
LazyStub: Computed values, got tests.test_using.TestModelFactory(one=4)

BaseFactory: Generating tests.test_using.TestModelFactory(one=4)
LazyStub: Computed values, got tests.test_using.TestModel2Factory(two=<tests.test_

→˓using.TestModel object at 0x1e15410>)
BaseFactory: Generating tests.test_using.TestModel2Factory(two=<tests.test_using.
→˓TestModel object at 0x1e15410>)

ORM Support

factory_boy has specific support for a few ORMs, through specific factory.Factory subclasses:

• Django, with factory.django.DjangoModelFactory

• Mogo, with factory.mogo.MogoFactory

• MongoEngine, with factory.mongoengine.MongoEngineFactory

• SQLAlchemy, with factory.alchemy.SQLAlchemyModelFactory

10 Chapter 3. Usage

CHAPTER 4

Contributing

factory_boy is distributed under the MIT License.

Issues should be opened through GitHub Issues; whenever possible, a pull request should be included.

All pull request should pass the test suite, which can be launched simply with:

$ make test

In order to test coverage, please use:

$ make coverage

To test with a specific framework version, you may use:

$ make DJANGO=1.7 test

Valid options are:

• DJANGO for Django

• MONGOENGINE for mongoengine

• ALCHEMY for SQLAlchemy

11

http://github.com/rbarrois/factory_boy/issues/

Factory Boy Documentation, Release 2.6.0

12 Chapter 4. Contributing

CHAPTER 5

Contents, indices and tables

Introduction

The purpose of factory_boy is to provide a default way of getting a new instance, while still being able to override
some fields on a per-call basis.

Note: This section will drive you through an overview of factory_boy’s feature. New users are advised to spend a
few minutes browsing through this list of useful helpers.

Users looking for quick helpers may take a look at Common recipes, while those needing detailed documentation will
be interested in the Reference section.

Basic usage

Factories declare a set of attributes used to instantiate an object, whose class is defined in the class Meta‘s model
attribute:

• Subclass factory.Factory (or a more suitable subclass)

• Add a class Meta: block

• Set its model attribute to the target class

• Add defaults for keyword args to pass to the associated class’ __init__ method

import factory
from . import base

class UserFactory(factory.Factory):
class Meta:

model = base.User

13

Factory Boy Documentation, Release 2.6.0

firstname = "John"
lastname = "Doe"

You may now get base.User instances trivially:

>>> john = UserFactory()
<User: John Doe>

It is also possible to override the defined attributes by passing keyword arguments to the factory:

>>> jack = UserFactory(firstname="Jack")
<User: Jack Doe>

A given class may be associated to many Factory subclasses:

class EnglishUserFactory(factory.Factory):
class Meta:

model = base.User

firstname = "John"
lastname = "Doe"
lang = 'en'

class FrenchUserFactory(factory.Factory):
class Meta:

model = base.User

firstname = "Jean"
lastname = "Dupont"
lang = 'fr'

>>> EnglishUserFactory()
<User: John Doe (en)>
>>> FrenchUserFactory()
<User: Jean Dupont (fr)>

Sequences

When a field has a unique key, each object generated by the factory should have a different value for that field. This is
achieved with the Sequence declaration:

class UserFactory(factory.Factory):
class Meta:

model = models.User

username = factory.Sequence(lambda n: 'user%d' % n)

>>> UserFactory()
<User: user1>
>>> UserFactory()
<User: user2>

Note: For more complex situations, you may also use the @sequence() decorator (note that self is not added as
first parameter):

14 Chapter 5. Contents, indices and tables

Factory Boy Documentation, Release 2.6.0

class UserFactory(factory.Factory):
class Meta:

model = models.User

@factory.sequence
def username(n):

return 'user%d' % n

LazyAttribute

Some fields may be deduced from others, for instance the email based on the username. The LazyAttribute
handles such cases: it should receive a function taking the object being built and returning the value for the field:

class UserFactory(factory.Factory):
class Meta:

model = models.User

username = factory.Sequence(lambda n: 'user%d' % n)
email = factory.LazyAttribute(lambda obj: '%s@example.com' % obj.username)

>>> UserFactory()
<User: user1 (user1@example.com)>

>>> # The LazyAttribute handles overridden fields
>>> UserFactory(username='john')
<User: john (john@example.com)>

>>> # They can be directly overridden as well
>>> UserFactory(email='doe@example.com')
<User: user3 (doe@example.com)>

Note: As for Sequence, a @lazy_attribute() decorator is available:

class UserFactory(factory.Factory):
class Meta:

model = models.User

username = factory.Sequence(lambda n: 'user%d' % n)

@factory.lazy_attribute
def email(self):

return '%s@example.com' % self.username

Inheritance

Once a “base” factory has been defined for a given class, alternate versions can be easily defined through subclassing.

The subclassed Factory will inherit all declarations from its parent, and update them with its own declarations:

class UserFactory(factory.Factory):
class Meta:

5.1. Introduction 15

Factory Boy Documentation, Release 2.6.0

model = base.User

firstname = "John"
lastname = "Doe"
group = 'users'

class AdminFactory(UserFactory):
admin = True
group = 'admins'

>>> user = UserFactory()
>>> user
<User: John Doe>
>>> user.group
'users'

>>> admin = AdminFactory()
>>> admin
<User: John Doe (admin)>
>>> admin.group # The AdminFactory field has overridden the base field
'admins'

Any argument of all factories in the chain can easily be overridden:

>>> super_admin = AdminFactory(group='superadmins', lastname="Lennon")
>>> super_admin
<User: John Lennon (admin)>
>>> super_admin.group # Overridden at call time
'superadmins'

Non-kwarg arguments

Some classes take a few, non-kwarg arguments first.

This is handled by the inline_args attribute:

class MyFactory(factory.Factory):
class Meta:

model = MyClass
inline_args = ('x', 'y')

x = 1
y = 2
z = 3

>>> MyFactory(y=4)
<MyClass(1, 4, z=3)>

Strategies

All factories support two built-in strategies:

• build provides a local object

• create instantiates a local object, and saves it to the database.

16 Chapter 5. Contents, indices and tables

Factory Boy Documentation, Release 2.6.0

Note: For 1.X versions, the create will actually call AssociatedClass.objects.create, as for a Django
model.

Starting from 2.0, factory.Factory.create() simply calls AssociatedClass(**kwargs). You should
use DjangoModelFactory for Django models.

When a Factory includes related fields (SubFactory , RelatedFactory), the parent’s strategy will be pushed
onto related factories.

Calling a Factory subclass will provide an object through the default strategy:

class MyFactory(factory.Factory):
class Meta:

model = MyClass

>>> MyFactory.create()
<MyFactory: X (saved)>

>>> MyFactory.build()
<MyFactory: X (unsaved)>

>>> MyFactory() # equivalent to MyFactory.create()
<MyClass: X (saved)>

The default strategy can be changed by setting the class Meta strategy attribute.

Reference

This section offers an in-depth description of factory_boy features.

For internals and customization points, please refer to the Internals section.

The Factory class

class factory.FactoryOptions
New in version 2.4.0.

A Factory‘s behaviour can be tuned through a few settings.

For convenience, they are declared in a single class Meta attribute:

class MyFactory(factory.Factory):
class Meta:

model = MyObject
abstract = False

model
This optional attribute describes the class of objects to generate.

If unset, it will be inherited from parent Factory subclasses.

New in version 2.4.0.

5.2. Reference 17

Factory Boy Documentation, Release 2.6.0

abstract
This attribute indicates that the Factory subclass should not be used to generate objects, but instead
provides some extra defaults.

It will be automatically set to True if neither the Factory subclass nor its parents define the model
attribute.

Warning: This flag is reset to False when a Factory subclasses another one if a model is set.

New in version 2.4.0.

inline_args
Some factories require non-keyword arguments to their __init__(). They should be listed, in order, in
the inline_args attribute:

class UserFactory(factory.Factory):
class Meta:

model = User
inline_args = ('login', 'email')

login = 'john'
email = factory.LazyAttribute(lambda o: '%s@example.com' % o.login)
firstname = "John"

>>> UserFactory()
<User: john>
>>> User('john', 'john@example.com', firstname="John") # actual call

New in version 2.4.0.

exclude
While writing a Factory for some object, it may be useful to have general fields helping defining others,
but that should not be passed to the model class; for instance, a field named ‘now’ that would hold a
reference time used by other objects.

Factory fields whose name are listed in exclude will be removed from the set of args/kwargs passed to
the underlying class; they can be any valid factory_boy declaration:

class OrderFactory(factory.Factory):
class Meta:

model = Order
exclude = ('now',)

now = factory.LazyAttribute(lambda o: datetime.datetime.utcnow())
started_at = factory.LazyAttribute(lambda o: o.now - datetime.

→˓timedelta(hours=1))
paid_at = factory.LazyAttribute(lambda o: o.now - datetime.

→˓timedelta(minutes=50))

>>> OrderFactory() # The value of 'now' isn't passed to Order()
<Order: started 2013-04-01 12:00:00, paid 2013-04-01 12:10:00>

>>> # An alternate value may be passed for 'now'
>>> OrderFactory(now=datetime.datetime(2013, 4, 1, 10))
<Order: started 2013-04-01 09:00:00, paid 2013-04-01 09:10:00>

New in version 2.4.0.

18 Chapter 5. Contents, indices and tables

https://docs.python.org/2/reference/datamodel.html#object.__init__

Factory Boy Documentation, Release 2.6.0

rename
Sometimes, a model expect a field with a name already used by one of Factory‘s methods.

In this case, the rename attributes allows to define renaming rules: the keys of the rename dict are those
used in the Factory declarations, and their values the new name:

class ImageFactory(factory.Factory):
The model expects "attributes"
form_attributes = ['thumbnail', 'black-and-white']

class Meta:
model = Image
rename = {'form_attributes': 'attributes'}

strategy
Use this attribute to change the strategy used by a Factory . The default is CREATE_STRATEGY .

class factory.Factory
Class-level attributes:

_meta
New in version 2.4.0.

The FactoryOptions instance attached to a Factory class is available as a _meta attribute.

_options_class
New in version 2.4.0.

If a Factory subclass needs to define additional, extra options, it has to provide a custom
FactoryOptions subclass.

A pointer to that custom class should be provided as _options_class so that the Factory-building
metaclass can use it instead.

Base functions:

The Factory class provides a few methods for getting objects; the usual way being to simply call the class:

>>> UserFactory() # Calls UserFactory.create()
>>> UserFactory(login='john') # Calls UserFactory.create(login='john')

Under the hood, factory_boy will define the Factory __new__() method to call the default strategy of the
Factory .

A specific strategy for getting instance can be selected by calling the adequate method:

classmethod build(cls, **kwargs)
Provides a new object, using the ‘build’ strategy.

classmethod build_batch(cls, size, **kwargs)
Provides a list of size instances from the Factory , through the ‘build’ strategy.

classmethod create(cls, **kwargs)
Provides a new object, using the ‘create’ strategy.

classmethod create_batch(cls, size, **kwargs)
Provides a list of size instances from the Factory , through the ‘create’ strategy.

classmethod stub(cls, **kwargs)
Provides a new stub

classmethod stub_batch(cls, size, **kwargs)
Provides a list of size stubs from the Factory .

5.2. Reference 19

https://docs.python.org/2/reference/datamodel.html#object.__new__

Factory Boy Documentation, Release 2.6.0

classmethod generate(cls, strategy, **kwargs)
Provide a new instance, with the provided strategy.

classmethod generate_batch(cls, strategy, size, **kwargs)
Provides a list of size instances using the specified strategy.

classmethod simple_generate(cls, create, **kwargs)
Provide a new instance, either built (create=False) or created (create=True).

classmethod simple_generate_batch(cls, create, size, **kwargs)
Provides a list of size instances, either built or created according to create.

Extension points:

A Factory subclass may override a couple of class methods to adapt its behaviour:

classmethod _adjust_kwargs(cls, **kwargs)
The _adjust_kwargs() extension point allows for late fields tuning.

It is called once keyword arguments have been resolved and post-generation items removed, but before the
inline_args extraction phase.

class UserFactory(factory.Factory):

@classmethod
def _adjust_kwargs(cls, **kwargs):

Ensure ``lastname`` is upper-case.
kwargs['lastname'] = kwargs['lastname'].upper()
return kwargs

classmethod _setup_next_sequence(cls)
This method will compute the first value to use for the sequence counter of this factory.

It is called when the first instance of the factory (or one of its subclasses) is created.

Subclasses may fetch the next free ID from the database, for instance.

classmethod _build(cls, model_class, *args, **kwargs)
This class method is called whenever a new instance needs to be built. It receives the model class (provided
to model), and the positional and keyword arguments to use for the class once all has been computed.

Subclasses may override this for custom APIs.

classmethod _create(cls, model_class, *args, **kwargs)
The _create() method is called whenever an instance needs to be created. It receives the same argu-
ments as _build().

Subclasses may override this for specific persistence backends:

class BaseBackendFactory(factory.Factory):
class Meta:

abstract = True # Optional

def _create(cls, model_class, *args, **kwargs):
obj = model_class(*args, **kwargs)
obj.save()
return obj

classmethod _after_postgeneration(cls, obj, create, results=None)

Parameters

• obj (object) – The object just generated

20 Chapter 5. Contents, indices and tables

https://docs.python.org/2/library/functions.html#object

Factory Boy Documentation, Release 2.6.0

• create (bool) – Whether the object was ‘built’ or ‘created’

• results (dict) – Map of post-generation declaration name to call result

The _after_postgeneration() is called once post-generation declarations have been handled.

Its arguments allow to handle specifically some post-generation return values, for instance.

Advanced functions:

classmethod reset_sequence(cls, value=None, force=False)

Parameters

• value (int) – The value to reset the sequence to

• force (bool) – Whether to force-reset the sequence

Allows to reset the sequence counter for a Factory . The new value can be passed in as the value
argument:

>>> SomeFactory.reset_sequence(4)
>>> SomeFactory._next_sequence
4

Since subclasses of a non-abstract Factory share the same sequence counter, special care needs to
be taken when resetting the counter of such a subclass.

By default, reset_sequence() will raise a ValueError when called on a subclassed Factory
subclass. This can be avoided by passing in the force=True flag:

>>> InheritedFactory.reset_sequence()
Traceback (most recent call last):
File "factory_boy/tests/test_base.py", line 179, in test_reset_sequence_

→˓subclass_parent
SubTestObjectFactory.reset_sequence()

File "factory_boy/factory/base.py", line 250, in reset_sequence
"Cannot reset the sequence of a factory subclass. "

ValueError: Cannot reset the sequence of a factory subclass. Please call
→˓reset_sequence() on the root factory, or call reset_sequence(forward=True).

>>> InheritedFactory.reset_sequence(force=True)
>>>

This is equivalent to calling reset_sequence() on the base factory in the chain.

Strategies

factory_boy supports two main strategies for generating instances, plus stubs.

factory.BUILD_STRATEGY
The ‘build’ strategy is used when an instance should be created, but not persisted to any datastore.

It is usually a simple call to the __init__() method of the model class.

factory.CREATE_STRATEGY
The ‘create’ strategy builds and saves an instance into its appropriate datastore.

This is the default strategy of factory_boy; it would typically instantiate an object, then save it:

5.2. Reference 21

https://docs.python.org/2/library/functions.html#bool
https://docs.python.org/2/library/stdtypes.html#dict
https://docs.python.org/2/library/functions.html#int
https://docs.python.org/2/library/functions.html#bool
https://docs.python.org/2/reference/datamodel.html#object.__init__

Factory Boy Documentation, Release 2.6.0

>>> obj = self._associated_class(*args, **kwargs)
>>> obj.save()
>>> return obj

Warning: For backward compatibility reasons, the default behaviour of factory_boy is to call MyClass.
objects.create(*args, **kwargs) when using the create strategy.

That policy will be used if the associated class has an objects attribute and the _create()
classmethod of the Factory wasn’t overridden.

factory.use_strategy(strategy)
Decorator

Change the default strategy of the decorated Factory to the chosen strategy:

@use_strategy(factory.BUILD_STRATEGY)
class UserBuildingFactory(UserFactory):

pass

factory.STUB_STRATEGY
The ‘stub’ strategy is an exception in the factory_boy world: it doesn’t return an instance of the model class,
and actually doesn’t require one to be present.

Instead, it returns an instance of StubObject whose attributes have been set according to the declarations.

class factory.StubObject(object)
A plain, stupid object. No method, no helpers, simply a bunch of attributes.

It is typically instantiated, then has its attributes set:

>>> obj = StubObject()
>>> obj.x = 1
>>> obj.y = 2

class factory.StubFactory(Factory)
An abstract Factory , with a default strategy set to STUB_STRATEGY .

factory.debug(logger=’factory’, stream=None)

Parameters

• logger (str) – The name of the logger to enable debug for

• stream (file) – The stream to send debug output to, defaults to sys.stderr

Context manager to help debugging factory_boy behavior. It will temporarily put the target logger (e.g
'factory') in debug mode, sending all output to :obj‘~sys.stderr‘; upon leaving the context, the logging
levels are reset.

A typical use case is to understand what happens during a single factory call:

with factory.debug():
obj = TestModel2Factory()

This will yield messages similar to those (artificial indentation):

BaseFactory: Preparing tests.test_using.TestModel2Factory(extra={})
LazyStub: Computing values for tests.test_using.TestModel2Factory(two=

→˓<OrderedDeclarationWrapper for <factory.declarations.SubFactory object at
→˓0x1e15610>>)

22 Chapter 5. Contents, indices and tables

https://docs.python.org/2/library/functions.html#str
https://docs.python.org/2/library/functions.html#file
https://docs.python.org/2/library/sys.html#sys.stderr

Factory Boy Documentation, Release 2.6.0

SubFactory: Instantiating tests.test_using.TestModelFactory(__containers=(
→˓<LazyStub for tests.test_using.TestModel2Factory>,), one=4), create=True

BaseFactory: Preparing tests.test_using.TestModelFactory(extra={'__containers
→˓': (<LazyStub for tests.test_using.TestModel2Factory>,), 'one': 4})

LazyStub: Computing values for tests.test_using.TestModelFactory(one=4)
LazyStub: Computed values, got tests.test_using.TestModelFactory(one=4)

BaseFactory: Generating tests.test_using.TestModelFactory(one=4)
LazyStub: Computed values, got tests.test_using.TestModel2Factory(two=<tests.

→˓test_using.TestModel object at 0x1e15410>)
BaseFactory: Generating tests.test_using.TestModel2Factory(two=<tests.test_using.
→˓TestModel object at 0x1e15410>)

Declarations

Faker

class factory.Faker(provider, locale=None, **kwargs)
In order to easily define realistic-looking factories, use the Faker attribute declaration.

This is a wrapper around fake-factory; its argument is the name of a fake-factory provider:

class UserFactory(factory.Factory):
class Meta:

model = User

name = factory.Faker('name')

>>> user = UserFactory()
>>> user.name
'Lucy Cechtelar'

locale
If a custom locale is required for one specific field, use the locale parameter:

class UserFactory(factory.Factory):
class Meta:

model = User

name = factory.Faker('name', locale='fr_FR')

>>> user = UserFactory()
>>> user.name
'Jean Valjean'

classmethod override_default_locale(cls, locale)
If the locale needs to be overridden for a whole test, use override_default_locale():

>>> with factory.Faker.override_default_locale('de_DE'):
... UserFactory()
<User: Johannes Brahms>

classmethod add_provider(cls, locale=None)
Some projects may need to fake fields beyond those provided by fake-factory; in such cases, use
factory.Faker.add_provider() to declare additional providers for those fields:

5.2. Reference 23

https://pypi.python.org/pypi/fake-factory

Factory Boy Documentation, Release 2.6.0

factory.Faker.add_provider(SmileyProvider)

class FaceFactory(factory.Factory):
class Meta:

model = Face

smiley = factory.Faker('smiley')

LazyAttribute

class factory.LazyAttribute(method_to_call)

The LazyAttribute is a simple yet extremely powerful building brick for extending a Factory .

It takes as argument a method to call (usually a lambda); that method should accept the object being built as sole
argument, and return a value.

class UserFactory(factory.Factory):
class Meta:

model = User

username = 'john'
email = factory.LazyAttribute(lambda o: '%s@example.com' % o.username)

>>> u = UserFactory()
>>> u.email
'john@example.com'

>>> u = UserFactory(username='leo')
>>> u.email
'leo@example.com'

The object passed to LazyAttribute is not an instance of the target class, but instead a LazyStub: a temporary
container that computes the value of all declared fields.

Decorator

factory.lazy_attribute()

If a simple lambda isn’t enough, you may use the lazy_attribute() decorator instead.

This decorates an instance method that should take a single argument, self; the name of the method will be used as
the name of the attribute to fill with the return value of the method:

class UserFactory(factory.Factory)
class Meta:

model = User

name = u"Jean"

@factory.lazy_attribute
def email(self):

Convert to plain ascii text
clean_name = (unicodedata.normalize('NFKD', self.name)

.encode('ascii', 'ignore')

24 Chapter 5. Contents, indices and tables

Factory Boy Documentation, Release 2.6.0

.decode('utf8'))
return u'%s@example.com' % clean_name

>>> joel = UserFactory(name=u"Joël")
>>> joel.email
u'joel@example.com'

Sequence

class factory.Sequence(lambda, type=int)

If a field should be unique, and thus different for all built instances, use a Sequence.

This declaration takes a single argument, a function accepting a single parameter - the current sequence counter - and
returning the related value.

Note: An extra kwarg argument, type, may be provided. This feature is deprecated in 1.3.0 and will be removed in
2.0.0.

class UserFactory(factory.Factory)
class Meta:

model = User

phone = factory.Sequence(lambda n: '123-555-%04d' % n)

>>> UserFactory().phone
'123-555-0001'
>>> UserFactory().phone
'123-555-0002'

Decorator

factory.sequence()

As with lazy_attribute(), a decorator is available for complex situations.

sequence() decorates an instance method, whose self method will actually be the sequence counter - this might
be confusing:

class UserFactory(factory.Factory)
class Meta:

model = User

@factory.sequence
def phone(n):

a = n // 10000
b = n % 10000
return '%03d-555-%04d' % (a, b)

>>> UserFactory().phone
'000-555-9999'
>>> UserFactory().phone
'001-555-0000'

5.2. Reference 25

Factory Boy Documentation, Release 2.6.0

Sharing

The sequence counter is shared across all Sequence attributes of the Factory:

class UserFactory(factory.Factory):
class Meta:

model = User

phone = factory.Sequence(lambda n: '%04d' % n)
office = factory.Sequence(lambda n: 'A23-B%03d' % n)

>>> u = UserFactory()
>>> u.phone, u.office
'0041', 'A23-B041'
>>> u2 = UserFactory()
>>> u2.phone, u2.office
'0042', 'A23-B042'

Inheritance

When a Factory inherits from another Factory , their sequence counter is shared:

class UserFactory(factory.Factory):
class Meta:

model = User

phone = factory.Sequence(lambda n: '123-555-%04d' % n)

class EmployeeFactory(UserFactory):
office_phone = factory.Sequence(lambda n: '%04d' % n)

>>> u = UserFactory()
>>> u.phone
'123-555-0001'

>>> e = EmployeeFactory()
>>> e.phone, e.office_phone
'123-555-0002', '0002'

>>> u2 = UserFactory()
>>> u2.phone
'123-555-0003'

Forcing a sequence counter

If a specific value of the sequence counter is required for one instance, the __sequence keyword argument should
be passed to the factory method.

This will force the sequence counter during the call, without altering the class-level value.

class UserFactory(factory.Factory):
class Meta:

model = User

26 Chapter 5. Contents, indices and tables

Factory Boy Documentation, Release 2.6.0

uid = factory.Sequence(int)

>>> UserFactory()
<User: 0>
>>> UserFactory()
<User: 1>
>>> UserFactory(__sequence=42)
<User: 42>

Warning: The impact of setting __sequence=n on a _batch call is undefined. Each generated instance may
share a same counter, or use incremental values starting from the forced value.

LazyAttributeSequence

class factory.LazyAttributeSequence(method_to_call)

The LazyAttributeSequence declaration merges features of Sequence and LazyAttribute.

It takes a single argument, a function whose two parameters are, in order:

• The object being built

• The sequence counter

class UserFactory(factory.Factory):
class Meta:

model = User

login = 'john'
email = factory.LazyAttributeSequence(lambda o, n: '%s@s%d.example.com' % (o.

→˓login, n))

>>> UserFactory().email
'john@s1.example.com'
>>> UserFactory(login='jack').email
'jack@s2.example.com'

Decorator

factory.lazy_attribute_sequence(method_to_call)

As for lazy_attribute() and sequence(), the lazy_attribute_sequence() handles more complex
cases:

class UserFactory(factory.Factory):
class Meta:

model = User

login = 'john'

@lazy_attribute_sequence
def email(self, n):

5.2. Reference 27

Factory Boy Documentation, Release 2.6.0

bucket = n % 10
return '%s@s%d.example.com' % (self.login, bucket)

SubFactory

class factory.SubFactory(factory, **kwargs)

This attribute declaration calls another Factory subclass, selecting the same build strategy and collecting extra
kwargs in the process.

The SubFactory attribute should be called with:

• A Factory subclass as first argument, or the fully qualified import path to that Factory (see Circular
imports)

• An optional set of keyword arguments that should be passed when calling that factory

Note: When passing an actual Factory for the factory argument, make sure to pass the class and not instance
(i.e no () after the class):

class FooFactory(factory.Factory):
class Meta:

model = Foo

bar = factory.SubFactory(BarFactory) # Not BarFactory()

Definition

A standard factory
class UserFactory(factory.Factory):

class Meta:
model = User

Various fields
first_name = 'John'
last_name = factory.Sequence(lambda n: 'D%se' % ('o' * n)) # De, Doe, Dooe,

→˓Doooe, ...
email = factory.LazyAttribute(lambda o: '%s.%s@example.org' % (o.first_name.

→˓lower(), o.last_name.lower()))

A factory for an object with a 'User' field
class CompanyFactory(factory.Factory):

class Meta:
model = Company

name = factory.Sequence(lambda n: 'FactoryBoyz' + 'z' * n)

Let's use our UserFactory to create that user, and override its first name.
owner = factory.SubFactory(UserFactory, first_name='Jack')

28 Chapter 5. Contents, indices and tables

Factory Boy Documentation, Release 2.6.0

Calling

The wrapping factory will call of the inner factory:

>>> c = CompanyFactory()
>>> c
<Company: FactoryBoyz>

Notice that the first_name was overridden
>>> c.owner
<User: Jack De>
>>> c.owner.email
jack.de@example.org

Fields of the SubFactory may be overridden from the external factory:

>>> c = CompanyFactory(owner__first_name='Henry')
>>> c.owner
<User: Henry Doe>

Notice that the updated first_name was propagated to the email LazyAttribute.
>>> c.owner.email
henry.doe@example.org

It is also possible to override other fields of the SubFactory
>>> c = CompanyFactory(owner__last_name='Jones')
>>> c.owner
<User: Henry Jones>
>>> c.owner.email
henry.jones@example.org

Strategies

The strategy chosen for the external factory will be propagated to all subfactories:

>>> c = CompanyFactory()
>>> c.pk # Saved to the database
3
>>> c.owner.pk # Saved to the database
8

>>> c = CompanyFactory.build()
>>> c.pk # Not saved
None
>>> c.owner.pk # Not saved either
None

Circular imports

Some factories may rely on each other in a circular manner. This issue can be handled by passing the absolute import
path to the target Factory to the SubFactory .

New in version 1.3.0.

5.2. Reference 29

Factory Boy Documentation, Release 2.6.0

class UserFactory(factory.Factory):
class Meta:

model = User

username = 'john'
main_group = factory.SubFactory('users.factories.GroupFactory')

class GroupFactory(factory.Factory):
class Meta:

model = Group

name = "MyGroup"
owner = factory.SubFactory(UserFactory)

Obviously, such circular relationships require careful handling of loops:

>>> owner = UserFactory(main_group=None)
>>> UserFactory(main_group__owner=owner)
<john (group: MyGroup)>

SelfAttribute

class factory.SelfAttribute(dotted_path_to_attribute)

Some fields should reference another field of the object being constructed, or an attribute thereof.

This is performed by the SelfAttribute declaration. That declaration takes a single argument, a dot-delimited
path to the attribute to fetch:

class UserFactory(factory.Factory)
class Meta:

model = User

birthdate = factory.Sequence(lambda n: datetime.date(2000, 1, 1) + datetime.
→˓timedelta(days=n))

birthmonth = factory.SelfAttribute('birthdate.month')

>>> u = UserFactory()
>>> u.birthdate
date(2000, 3, 15)
>>> u.birthmonth
3

Parents

When used in conjunction with SubFactory , the SelfAttribute gains an “upward” semantic through the
double-dot notation, as used in Python imports.

factory.SelfAttribute('..country.language') means “Select the language of the country of
the Factory calling me”.

class UserFactory(factory.Factory):
class Meta:

model = User

30 Chapter 5. Contents, indices and tables

Factory Boy Documentation, Release 2.6.0

language = 'en'

class CompanyFactory(factory.Factory):
class Meta:

model = Company

country = factory.SubFactory(CountryFactory)
owner = factory.SubFactory(UserFactory, language=factory.SelfAttribute('..country.

→˓language'))

>>> company = CompanyFactory()
>>> company.country.language
'fr'
>>> company.owner.language
'fr'

Obviously, this “follow parents” hability also handles overriding some attributes on call:

>>> company = CompanyFactory(country=china)
>>> company.owner.language
'cn'

This feature is also available to LazyAttribute and LazyAttributeSequence, through the
factory_parent attribute of the passed-in object:

class CompanyFactory(factory.Factory):
class Meta:

model = Company
country = factory.SubFactory(CountryFactory)
owner = factory.SubFactory(UserFactory,

language=factory.LazyAttribute(lambda user: user.factory_parent.country.
→˓language),

)

Iterator

class factory.Iterator(iterable, cycle=True, getter=None)
The Iterator declaration takes succesive values from the given iterable. When it is exhausted, it starts again
from zero (unless cycle=False).

cycle
The cycle argument is only useful for advanced cases, where the provided iterable has no end (as wishing
to cycle it means storing values in memory...).

New in version 1.3.0: The cycle argument is available as of v1.3.0; previous versions had a behaviour
equivalent to cycle=False.

getter
A custom function called on each value returned by the iterable. See the Getter section for details.

New in version 1.3.0.

reset()
Reset the internal iterator used by the attribute, so that the next value will be the first value generated by
the iterator.

May be called several times.

5.2. Reference 31

Factory Boy Documentation, Release 2.6.0

Each call to the factory will receive the next value from the iterable:

class UserFactory(factory.Factory)
lang = factory.Iterator(['en', 'fr', 'es', 'it', 'de'])

>>> UserFactory().lang
'en'
>>> UserFactory().lang
'fr'

When a value is passed in for the argument, the iterator will not be advanced:

>>> UserFactory().lang
'en'
>>> UserFactory(lang='cn').lang
'cn'
>>> UserFactory().lang
'fr'

Getter

Some situations may reuse an existing iterable, using only some component. This is handled by the getter attribute:
this is a function that accepts as sole parameter a value from the iterable, and returns an adequate value.

class UserFactory(factory.Factory):
class Meta:

model = User

CATEGORY_CHOICES is a list of (key, title) tuples
category = factory.Iterator(User.CATEGORY_CHOICES, getter=lambda c: c[0])

Decorator

factory.iterator(func)

When generating items of the iterator gets too complex for a simple list comprehension, use the iterator() deco-
rator:

Warning: The decorated function takes no argument, notably no self parameter.

class UserFactory(factory.Factory):
class Meta:

model = User

@factory.iterator
def name():

with open('test/data/names.dat', 'r') as f:
for line in f:

yield line

32 Chapter 5. Contents, indices and tables

Factory Boy Documentation, Release 2.6.0

Resetting

In order to start back at the first value in an Iterator, simply call the reset() method of that attribute (accessing
it from the bare Factory subclass):

>>> UserFactory().lang
'en'
>>> UserFactory().lang
'fr'
>>> UserFactory.lang.reset()
>>> UserFactory().lang
'en'

Dict and List

When a factory expects lists or dicts as arguments, such values can be generated through the whole range of fac-
tory_boy declarations, with the Dict and List attributes:

class factory.Dict(params[, dict_factory=factory.DictFactory])
The Dict class is used for dict-like attributes. It receives as non-keyword argument a dictionary of fields to
define, whose value may be any factory-enabled declarations:

class UserFactory(factory.Factory):
class Meta:

model = User

is_superuser = False
roles = factory.Dict({

'role1': True,
'role2': False,
'role3': factory.Iterator([True, False]),
'admin': factory.SelfAttribute('..is_superuser'),

})

Note: Declarations used as a Dict values are evaluated within that Dict‘s context; this means that you must
use the ..foo syntax to access fields defined at the factory level.

On the other hand, the Sequence counter is aligned on the containing factory’s one.

The Dict behaviour can be tuned through the following parameters:

dict_factory
The actual factory to use for generating the dict can be set as a keyword argument, if an exotic dictionary-
like object (SortedDict, ...) is required.

class factory.List(items[, list_factory=factory.ListFactory])
The List can be used for list-like attributes.

Internally, the fields are converted into a index=value dict, which makes it possible to override some values
at use time:

class UserFactory(factory.Factory):
class Meta:

model = User

flags = factory.List([

5.2. Reference 33

Factory Boy Documentation, Release 2.6.0

'user',
'active',
'admin',

])

>>> u = UserFactory(flags__2='superadmin')
>>> u.flags
['user', 'active', 'superadmin']

The List behaviour can be tuned through the following parameters:

list_factory
The actual factory to use for generating the list can be set as a keyword argument, if another type (tuple,
set, ...) is required.

Post-generation hooks

Some objects expect additional method calls or complex processing for proper definition. For instance, a User may
need to have a related Profile, where the Profile is built from the User object.

To support this pattern, factory_boy provides the following tools:

• PostGenerationMethodCall: allows you to hook a particular attribute to a function call

• PostGeneration: this class allows calling a given function with the generated object as argument

• post_generation(): decorator performing the same functions as PostGeneration

• RelatedFactory: this builds or creates a given factory after building/creating the first Factory.

Extracting parameters

All post-building hooks share a common base for picking parameters from the set of attributes passed to the Factory .

For instance, a PostGeneration hook is declared as post:

class SomeFactory(factory.Factory):
class Meta:

model = SomeObject

@post_generation
def post(obj, create, extracted, **kwargs):

obj.set_origin(create)

When calling the factory, some arguments will be extracted for this method:

• If a post argument is passed, it will be passed as the extracted field

• Any argument starting with post__XYZwill be extracted, its post__ prefix removed, and added to the kwargs
passed to the post-generation hook.

Extracted arguments won’t be passed to the model class.

Thus, in the following call:

>>> SomeFactory(
post=1,
post_x=2,
post__y=3,

34 Chapter 5. Contents, indices and tables

Factory Boy Documentation, Release 2.6.0

post__z__t=42,
)

The post hook will receive 1 as extracted and {'y': 3, 'z__t': 42} as keyword arguments;
{'post_x': 2} will be passed to SomeFactory._meta.model.

RelatedFactory

class factory.RelatedFactory(factory, factory_related_name=’‘, **kwargs)
A RelatedFactory behaves mostly like a SubFactory , with the main difference that the related
Factory will be generated after the base Factory .

factory
As for SubFactory , the factory argument can be:

•A Factory subclass

•Or the fully qualified path to a Factory subclass (see Circular imports for details)

name
The generated object (where the RelatedFactory attribute will set) may be passed to the related
factory if the factory_related_name parameter is set.

It will be passed as a keyword argument, using the name value as keyword:

Note: When passing an actual Factory for the factory argument, make sure to pass the class and not instance
(i.e no () after the class):

class FooFactory(factory.Factory):
class Meta:

model = Foo

bar = factory.RelatedFactory(BarFactory) # Not BarFactory()

class CityFactory(factory.Factory):
class Meta:

model = City

capital_of = None
name = "Toronto"

class CountryFactory(factory.Factory):
class Meta:

model = Country

lang = 'fr'
capital_city = factory.RelatedFactory(CityFactory, 'capital_of', name="Paris")

>>> france = CountryFactory()
>>> City.objects.get(capital_of=france)
<City: Paris>

Extra kwargs may be passed to the related factory, through the usual ATTR__SUBATTR syntax:

5.2. Reference 35

Factory Boy Documentation, Release 2.6.0

>>> england = CountryFactory(lang='en', capital_city__name="London")
>>> City.objects.get(capital_of=england)
<City: London>

If a value if passed for the RelatedFactory attribute, this disables RelatedFactory generation:

>>> france = CountryFactory()
>>> paris = City.objects.get()
>>> paris
<City: Paris>
>>> reunion = CountryFactory(capital_city=paris)
>>> City.objects.count() # No new capital_city generated
1
>>> guyane = CountryFactory(capital_city=paris, capital_city__name='Kourou')
>>> City.objects.count() # No new capital_city generated, ``name`` ignored.
1

PostGeneration

class factory.PostGeneration(callable)

The PostGeneration declaration performs actions once the model object has been generated.

Its sole argument is a callable, that will be called once the base object has been generated.

Once the base object has been generated, the provided callable will be called as callable(obj, create,
extracted, **kwargs), where:

• obj is the base object previously generated

• create is a boolean indicating which strategy was used

• extracted is None unless a value was passed in for the PostGeneration declaration at Factory dec-
laration time

• kwargs are any extra parameters passed as attr__key=value when calling the Factory:

class UserFactory(factory.Factory):
class Meta:

model = User

login = 'john'
make_mbox = factory.PostGeneration(

lambda obj, create, extracted, **kwargs: os.makedirs(obj.login))

Decorator

factory.post_generation()

A decorator is also provided, decorating a single method accepting the same obj, created, extracted and
keyword arguments as PostGeneration.

class UserFactory(factory.Factory):
class Meta:

model = User

login = 'john'

36 Chapter 5. Contents, indices and tables

Factory Boy Documentation, Release 2.6.0

@factory.post_generation
def mbox(self, create, extracted, **kwargs):

if not create:
return

path = extracted or os.path.join('/tmp/mbox/', self.login)
os.path.makedirs(path)
return path

>>> UserFactory.build() # Nothing was created
>>> UserFactory.create() # Creates dir /tmp/mbox/john
>>> UserFactory.create(login='jack') # Creates dir /tmp/mbox/jack
>>> UserFactory.create(mbox='/tmp/alt') # Creates dir /tmp/alt

PostGenerationMethodCall

class factory.PostGenerationMethodCall(method_name, *args, **kwargs)
The PostGenerationMethodCall declaration will call a method on the generated object just after instan-
tiation. This declaration class provides a friendly means of generating attributes of a factory instance during
initialization. The declaration is created using the following arguments:

method_name
The name of the method to call on the model object

args
The default set of unnamed arguments to pass to the method given in method_name

kwargs
The default set of keyword arguments to pass to the method given in method_name

Once the factory instance has been generated, the method specified in method_name will be called on the generated
object with any arguments specified in the PostGenerationMethodCall declaration, by default.

For example, to set a default password on a generated User instance during instantiation, we could make a declaration
for a password attribute like below:

class UserFactory(factory.Factory):
class Meta:

model = User

username = 'user'
password = factory.PostGenerationMethodCall('set_password',

'defaultpassword')

When we instantiate a user from the UserFactory, the factory will create a password attribute by calling
User.set_password('defaultpassword'). Thus, by default, our users will have a password set to
'defaultpassword'.

>>> u = UserFactory() # Calls user.set_password(
→˓'defaultpassword')
>>> u.check_password('defaultpassword')
True

If the PostGenerationMethodCall declaration contained no arguments or one argument, an overriding the
value can be passed directly to the method through a keyword argument matching the attribute name. For example we
can override the default password specified in the declaration above by simply passing in the desired password as a
keyword argument to the factory during instantiation.

5.2. Reference 37

Factory Boy Documentation, Release 2.6.0

>>> other_u = UserFactory(password='different') # Calls user.set_password('different
→˓')
>>> other_u.check_password('defaultpassword')
False
>>> other_u.check_password('different')
True

Note: For Django models, unless the object method called by PostGenerationMethodCall saves the object
back to the database, we will have to explicitly remember to save the object back if we performed a create().

>>> u = UserFactory.create() # u.password has not been saved back to the database
>>> u.save() # we must remember to do it ourselves

We can avoid this by subclassing from DjangoModelFactory, instead, e.g.,

class UserFactory(factory.django.DjangoModelFactory):
class Meta:

model = User

username = 'user'
password = factory.PostGenerationMethodCall('set_password',

'defaultpassword')

If instead the PostGenerationMethodCall declaration uses two or more positional arguments, the overriding
value must be an iterable. For example, if we declared the password attribute like the following,

class UserFactory(factory.Factory):
class Meta:

model = User

username = 'user'
password = factory.PostGenerationMethodCall('set_password', '', 'sha1')

then we must be cautious to pass in an iterable for the password keyword argument when creating an instance from
the factory:

>>> UserFactory() # Calls user.set_password('', 'sha1')
>>> UserFactory(password=('test', 'md5')) # Calls user.set_password('test', 'md5')

>>> # Always pass in a good iterable:
>>> UserFactory(password=('test',)) # Calls user.set_password('test')
>>> UserFactory(password='test') # Calls user.set_password('t', 'e', 's',
→˓'t')

Note: While this setup provides sane and intuitive defaults for most users, it prevents passing more than one argument
when the declaration used zero or one.

In such cases, users are advised to either resort to the more powerful PostGeneration or to
add the second expected argument default value to the PostGenerationMethodCall declaration
(PostGenerationMethodCall('method', 'x', 'y_that_is_the_default'))

Keywords extracted from the factory arguments are merged into the defaults present in the
PostGenerationMethodCall declaration.

38 Chapter 5. Contents, indices and tables

Factory Boy Documentation, Release 2.6.0

>>> UserFactory(password__disabled=True) # Calls user.set_password('', 'sha1',
→˓disabled=True)

Module-level functions

Beyond the Factory class and the various Declarations classes and methods, factory_boy exposes a few module-
level functions, mostly useful for lightweight factory generation.

Lightweight factory declaration

factory.make_factory(klass, **kwargs)
The make_factory() function takes a class, declarations as keyword arguments, and generates a new
Factory for that class accordingly:

UserFactory = make_factory(User,
login='john',
email=factory.LazyAttribute(lambda u: '%s@example.com' % u.login),

)

This is equivalent to:

class UserFactory(factory.Factory):
class Meta:

model = User

login = 'john'
email = factory.LazyAttribute(lambda u: '%s@example.com' % u.login)

An alternate base class to Factory can be specified in the FACTORY_CLASS argument:

UserFactory = make_factory(models.User,
login='john',
email=factory.LazyAttribute(lambda u: '%s@example.com' % u.login),
FACTORY_CLASS=factory.django.DjangoModelFactory,

)

This is equivalent to:

class UserFactory(factory.django.DjangoModelFactory):
class Meta:

model = models.User

login = 'john'
email = factory.LazyAttribute(lambda u: '%s@example.com' % u.login)

New in version 2.0.0: The FACTORY_CLASS kwarg was added in 2.0.0.

Instance building

The factory module provides a bunch of shortcuts for creating a factory and extracting instances from them:

factory.build(klass, FACTORY_CLASS=None, **kwargs)

5.2. Reference 39

Factory Boy Documentation, Release 2.6.0

factory.build_batch(klass, size, FACTORY_CLASS=None, **kwargs)
Create a factory for klass using declarations passed in kwargs; return an instance built from that factory, or a
list of size instances (for build_batch()).

Parameters

• klass (class) – Class of the instance to build

• size (int) – Number of instances to build

• kwargs – Declarations to use for the generated factory

• FACTORY_CLASS – Alternate base class (instead of Factory)

factory.create(klass, FACTORY_CLASS=None, **kwargs)

factory.create_batch(klass, size, FACTORY_CLASS=None, **kwargs)
Create a factory for klass using declarations passed in kwargs; return an instance created from that factory, or
a list of size instances (for create_batch()).

Parameters

• klass (class) – Class of the instance to create

• size (int) – Number of instances to create

• kwargs – Declarations to use for the generated factory

• FACTORY_CLASS – Alternate base class (instead of Factory)

factory.stub(klass, FACTORY_CLASS=None, **kwargs)

factory.stub_batch(klass, size, FACTORY_CLASS=None, **kwargs)
Create a factory for klass using declarations passed in kwargs; return an instance stubbed from that factory,
or a list of size instances (for stub_batch()).

Parameters

• klass (class) – Class of the instance to stub

• size (int) – Number of instances to stub

• kwargs – Declarations to use for the generated factory

• FACTORY_CLASS – Alternate base class (instead of Factory)

factory.generate(klass, strategy, FACTORY_CLASS=None, **kwargs)

factory.generate_batch(klass, strategy, size, FACTORY_CLASS=None, **kwargs)
Create a factory for klass using declarations passed in kwargs; return an instance generated from that factory
with the strategy strategy, or a list of size instances (for generate_batch()).

Parameters

• klass (class) – Class of the instance to generate

• strategy (str) – The strategy to use

• size (int) – Number of instances to generate

• kwargs – Declarations to use for the generated factory

• FACTORY_CLASS – Alternate base class (instead of Factory)

factory.simple_generate(klass, create, FACTORY_CLASS=None, **kwargs)

40 Chapter 5. Contents, indices and tables

https://docs.python.org/2/library/functions.html#int
https://docs.python.org/2/library/functions.html#int
https://docs.python.org/2/library/functions.html#int
https://docs.python.org/2/library/functions.html#str
https://docs.python.org/2/library/functions.html#int

Factory Boy Documentation, Release 2.6.0

factory.simple_generate_batch(klass, create, size, FACTORY_CLASS=None, **kwargs)
Create a factory for klass using declarations passed in kwargs; return an instance generated from that factory
according to the create flag, or a list of size instances (for simple_generate_batch()).

Parameters

• klass (class) – Class of the instance to generate

• create (bool) – Whether to build (False) or create (True) instances

• size (int) – Number of instances to generate

• kwargs – Declarations to use for the generated factory

• FACTORY_CLASS – Alternate base class (instead of Factory)

Using factory_boy with ORMs

factory_boy provides custom Factory subclasses for various ORMs, adding dedicated features.

Django

The first versions of factory_boy were designed specifically for Django, but the library has now evolved to be
framework-independant.

Most features should thus feel quite familiar to Django users.

The DjangoModelFactory subclass

All factories for a Django Model should use the DjangoModelFactory base class.

class factory.django.DjangoModelFactory(factory.Factory)
Dedicated class for Django Model factories.

This class provides the following features:

•The model attribute also supports the 'app.Model' syntax

•create() uses Model.objects.create()

•When using RelatedFactory or PostGeneration attributes, the base object will be saved once
all post-generation hooks have run.

Note: With Django versions 1.8.0 to 1.8.3, it was no longer possible to call .build() on a factory if this factory used
a SubFactory pointing to another model: Django refused to set a ForeignKey to an unsaved Model instance.

See https://code.djangoproject.com/ticket/10811 and https://code.djangoproject.com/ticket/25160 for details.

class factory.django.DjangoOptions(factory.base.FactoryOptions)
The class Meta on a DjangoModelFactory supports extra parameters:

database
New in version 2.5.0.

All queries to the related model will be routed to the given database. It defaults to 'default'.

5.3. Using factory_boy with ORMs 41

https://docs.python.org/2/library/functions.html#bool
https://docs.python.org/2/library/functions.html#int
http://docs.djangoproject.com/en/dev/ref/models/instances/#django.db.models.Model
http://docs.djangoproject.com/en/dev/ref/models/instances/#django.db.models.Model
http://docs.djangoproject.com/en/dev/ref/models/querysets/#django.db.models.query.QuerySet.create
http://docs.djangoproject.com/en/dev/ref/models/instances/#django.db.models.Model.save
http://docs.djangoproject.com/en/dev/ref/models/instances/#django.db.models.Model
https://code.djangoproject.com/ticket/10811
https://code.djangoproject.com/ticket/25160

Factory Boy Documentation, Release 2.6.0

django_get_or_create
New in version 2.4.0.

Fields whose name are passed in this list will be used to perform a Model.objects.
get_or_create() instead of the usual Model.objects.create():

class UserFactory(factory.django.DjangoModelFactory):
class Meta:

model = 'myapp.User' # Equivalent to ``model = myapp.models.User``
django_get_or_create = ('username',)

username = 'john'

>>> User.objects.all()
[]
>>> UserFactory() # Creates a new user
<User: john>
>>> User.objects.all()
[<User: john>]

>>> UserFactory() # Fetches the existing user
<User: john>
>>> User.objects.all() # No new user!
[<User: john>]

>>> UserFactory(username='jack') # Creates another user
<User: jack>
>>> User.objects.all()
[<User: john>, <User: jack>]

Note: If a DjangoModelFactory relates to an abstract model, be sure to declare the
DjangoModelFactory as abstract:

class MyAbstractModelFactory(factory.django.DjangoModelFactory):
class Meta:

model = models.MyAbstractModel
abstract = True

class MyConcreteModelFactory(MyAbstractModelFactory):
class Meta:

model = models.MyConcreteModel

Otherwise, factory_boy will try to get the ‘next PK’ counter from the abstract model.

Extra fields

class factory.django.FileField
Custom declarations for django.db.models.FileField

__init__(self, from_path=’‘, from_file=’‘, data=b’‘, filename=’example.dat’)

Parameters

• from_path (str) – Use data from the file located at from_path, and keep its filename

• from_file (file) – Use the contents of the provided file object; use its filename if
available

42 Chapter 5. Contents, indices and tables

http://docs.djangoproject.com/en/dev/ref/models/querysets/#django.db.models.query.QuerySet.get_or_create
http://docs.djangoproject.com/en/dev/ref/models/querysets/#django.db.models.query.QuerySet.get_or_create
http://docs.djangoproject.com/en/dev/ref/models/querysets/#django.db.models.query.QuerySet.create
http://docs.djangoproject.com/en/dev/ref/models/options/#django.db.models.Options.abstract
http://docs.djangoproject.com/en/dev/ref/models/fields/#django.db.models.FileField
https://docs.python.org/2/library/functions.html#str
https://docs.python.org/2/library/functions.html#file

Factory Boy Documentation, Release 2.6.0

• data (bytes) – Use the provided bytes as file contents

• filename (str) – The filename for the FileField

Note: If the value None was passed for the FileField field, this will disable field generation:

class MyFactory(factory.django.DjangoModelFactory):
class Meta:

model = models.MyModel

the_file = factory.django.FileField(filename='the_file.dat')

>>> MyFactory(the_file__data=b'uhuh').the_file.read()
b'uhuh'
>>> MyFactory(the_file=None).the_file
None

class factory.django.ImageField
Custom declarations for django.db.models.ImageField

__init__(self, from_path=’‘, from_file=’‘, filename=’example.jpg’, width=100, height=100,
color=’green’, format=’JPEG’)

Parameters

• from_path (str) – Use data from the file located at from_path, and keep its filename

• from_file (file) – Use the contents of the provided file object; use its filename if
available

• filename (str) – The filename for the ImageField

• width (int) – The width of the generated image (default: 100)

• height (int) – The height of the generated image (default: 100)

• color (str) – The color of the generated image (default: 'green')

• format (str) – The image format (as supported by PIL) (default: 'JPEG')

Note: If the value None was passed for the FileField field, this will disable field generation:

Note: Just as Django’s django.db.models.ImageField requires the Python Imaging Library, this
ImageField requires it too.

class MyFactory(factory.django.DjangoModelFactory):
class Meta:

model = models.MyModel

the_image = factory.django.ImageField(color='blue')

>>> MyFactory(the_image__width=42).the_image.width
42
>>> MyFactory(the_image=None).the_image
None

5.3. Using factory_boy with ORMs 43

https://docs.python.org/2/library/functions.html#str
http://docs.djangoproject.com/en/dev/ref/models/fields/#django.db.models.ImageField
https://docs.python.org/2/library/functions.html#str
https://docs.python.org/2/library/functions.html#file
https://docs.python.org/2/library/functions.html#str
https://docs.python.org/2/library/functions.html#int
https://docs.python.org/2/library/functions.html#int
https://docs.python.org/2/library/functions.html#str
https://docs.python.org/2/library/functions.html#str
http://docs.djangoproject.com/en/dev/ref/models/fields/#django.db.models.ImageField

Factory Boy Documentation, Release 2.6.0

Disabling signals

Signals are often used to plug some custom code into external components code; for instance to create Profile
objects on-the-fly when a new User object is saved.

This may interfere with finely tuned factories, which would create both using RelatedFactory .

To work around this problem, use the mute_signals() decorator/context manager:

factory.django.mute_signals(signal1, ...)
Disable the list of selected signals when calling the factory, and reactivate them upon leaving.

foo/factories.py

import factory
import factory.django

from . import models
from . import signals

@factory.django.mute_signals(signals.pre_save, signals.post_save)
class FooFactory(factory.django.DjangoModelFactory):

class Meta:
model = models.Foo

...

def make_chain():
with factory.django.mute_signals(signals.pre_save, signals.post_save):

pre_save/post_save won't be called here.
return SomeFactory(), SomeOtherFactory()

Mogo

factory_boy supports Mogo-style models, through the MogoFactory class.

Mogo is a wrapper around the pymongo library for MongoDB.

class factory.mogo.MogoFactory(factory.Factory)
Dedicated class for Mogo models.

This class provides the following features:

•build() calls a model’s new() method

•create() builds an instance through new() then saves it.

MongoEngine

factory_boy supports MongoEngine-style models, through the MongoEngineFactory class.

mongoengine is a wrapper around the pymongo library for MongoDB.

class factory.mongoengine.MongoEngineFactory(factory.Factory)
Dedicated class for MongoEngine models.

This class provides the following features:

•build() calls a model’s __init__ method

44 Chapter 5. Contents, indices and tables

https://github.com/joshmarshall/mogo
https://github.com/joshmarshall/mogo
https://github.com/joshmarshall/mogo
http://mongoengine.org/
http://mongoengine.org/
http://mongoengine.org/

Factory Boy Documentation, Release 2.6.0

•create() builds an instance through __init__ then saves it.

Note: If the associated class <factory.FactoryOptions.model is a mongoengine.
EmbeddedDocument, the create() function won’t “save” it, since this wouldn’t make sense.

This feature makes it possible to use SubFactory to create embedded document.

A minimalist example:

import mongoengine

class Address(mongoengine.EmbeddedDocument):
street = mongoengine.StringField()

class Person(mongoengine.Document):
name = mongoengine.StringField()
address = mongoengine.EmbeddedDocumentField(Address)

import factory

class AddressFactory(factory.mongoengine.MongoEngineFactory):
class Meta:

model = Address

street = factory.Sequence(lambda n: 'street%d' % n)

class PersonFactory(factory.mongoengine.MongoEngineFactory):
class Meta:

model = Person

name = factory.Sequence(lambda n: 'name%d' % n)
address = factory.SubFactory(AddressFactory)

SQLAlchemy

Factoy_boy also supports SQLAlchemy models through the SQLAlchemyModelFactory class.

To work, this class needs an SQLAlchemy session object affected to the Meta.sqlalchemy_session attribute.

class factory.alchemy.SQLAlchemyModelFactory(factory.Factory)
Dedicated class for SQLAlchemy models.

This class provides the following features:

•create() uses sqlalchemy.orm.session.Session.add()

class factory.alchemy.SQLAlchemyOptions(factory.base.FactoryOptions)
In addition to the usual parameters available in class Meta, a SQLAlchemyModelFactory also supports
the following settings:

sqlalchemy_session
SQLAlchemy session to use to communicate with the database when creating an object through this
SQLAlchemyModelFactory .

A (very) simple example:

from sqlalchemy import Column, Integer, Unicode, create_engine
from sqlalchemy.ext.declarative import declarative_base

5.3. Using factory_boy with ORMs 45

http://www.sqlalchemy.org/
http://www.sqlalchemy.org/
http://www.sqlalchemy.org/
http://docs.sqlalchemy.org/en/rel_0_9/orm/session_api.html#sqlalchemy.orm.session.Session.add

Factory Boy Documentation, Release 2.6.0

from sqlalchemy.orm import scoped_session, sessionmaker

engine = create_engine('sqlite://')
session = scoped_session(sessionmaker(bind=engine))
Base = declarative_base()

class User(Base):
""" A SQLAlchemy simple model class who represents a user """
__tablename__ = 'UserTable'

id = Column(Integer(), primary_key=True)
name = Column(Unicode(20))

Base.metadata.create_all(engine)

import factory

class UserFactory(factory.alchemy.SQLAlchemyModelFactory):
class Meta:

model = User
sqlalchemy_session = session # the SQLAlchemy session object

id = factory.Sequence(lambda n: n)
name = factory.Sequence(lambda n: u'User %d' % n)

>>> session.query(User).all()
[]
>>> UserFactory()
<User: User 1>
>>> session.query(User).all()
[<User: User 1>]

Managing sessions

Since SQLAlchemy is a general purpose library, there is no “global” session management system.

The most common pattern when working with unit tests and factory_boy is to use SQLAlchemy‘s sqlalchemy.
orm.scoping.scoped_session:

• The test runner configures some project-wide scoped_session

• Each SQLAlchemyModelFactory subclass uses this scoped_session as its sqlalchemy_session

• The tearDown() method of tests calls Session.remove to reset the session.

Note: See the excellent SQLAlchemy guide on scoped_session for details of scoped_session‘s usage.

The basic idea is that declarative parts of the code (including factories) need a simple way to access the “current
session”, but that session will only be created and configured at a later point.

The scoped_session handles this, by virtue of only creating the session when a query is sent to the database.

Here is an example layout:

• A global (test-only?) file holds the scoped_session:

46 Chapter 5. Contents, indices and tables

http://www.sqlalchemy.org/
http://www.sqlalchemy.org/
http://docs.sqlalchemy.org/en/rel_0_9/orm/contextual.html#sqlalchemy.orm.scoping.scoped_session
http://docs.sqlalchemy.org/en/rel_0_9/orm/contextual.html#sqlalchemy.orm.scoping.scoped_session
http://docs.sqlalchemy.org/en/rel_0_9/orm/contextual.html#sqlalchemy.orm.scoping.scoped_session
http://docs.sqlalchemy.org/en/rel_0_9/orm/contextual.html#sqlalchemy.orm.scoping.scoped_session
https://docs.python.org/2/library/unittest.html#unittest.TestCase.tearDown
http://docs.sqlalchemy.org/en/rel_0_9/orm/contextual.html#sqlalchemy.orm.scoping.scoped_session.remove
http://docs.sqlalchemy.org/en/rel_0_9/orm/contextual.html#unitofwork-contextual
http://docs.sqlalchemy.org/en/rel_0_9/orm/contextual.html#sqlalchemy.orm.scoping.scoped_session
http://docs.sqlalchemy.org/en/rel_0_9/orm/contextual.html#sqlalchemy.orm.scoping.scoped_session
http://docs.sqlalchemy.org/en/rel_0_9/orm/contextual.html#sqlalchemy.orm.scoping.scoped_session

Factory Boy Documentation, Release 2.6.0

myprojet/test/common.py

from sqlalchemy import orm
Session = orm.scoped_session(orm.sessionmaker())

• All factory access it:

myproject/factories.py

import factory
import factory.alchemy

from . import models
from .test import common

class UserFactory(factory.alchemy.SQLAlchemyModelFactory):
class Meta:

model = models.User

Use the not-so-global scoped_session
Warning: DO NOT USE common.Session()!
sqlalchemy_session = common.Session

name = factory.Sequence(lambda n: "User %d" % n)

• The test runner configures the scoped_session when it starts:

myproject/test/runtests.py

import sqlalchemy

from . import common

def runtests():
engine = sqlalchemy.create_engine('sqlite://')

It's a scoped_session, and now is the time to configure it.
common.Session.configure(bind=engine)

run_the_tests

• test cases use this scoped_session, and clear it after each test (for isolation):

myproject/test/test_stuff.py

import unittest

from . import common

class MyTest(unittest.TestCase):

def setUp(self):
Prepare a new, clean session
self.session = common.Session()

def test_something(self):
u = factories.UserFactory()
self.assertEqual([u], self.session.query(User).all())

5.3. Using factory_boy with ORMs 47

http://docs.sqlalchemy.org/en/rel_0_9/orm/contextual.html#sqlalchemy.orm.scoping.scoped_session
https://docs.python.org/2/library/unittest.html#unittest.TestCase

Factory Boy Documentation, Release 2.6.0

def tearDown(self):
Rollback the session => no changes to the database
self.session.rollback()
Remove it, so that the next test gets a new Session()
common.Session.remove()

Common recipes

Note: Most recipes below take on Django model examples, but can also be used on their own.

Dependent objects (ForeignKey)

When one attribute is actually a complex field (e.g a ForeignKey to another Model), use the SubFactory
declaration:

models.py
class User(models.Model):

first_name = models.CharField()
group = models.ForeignKey(Group)

factories.py
import factory
from . import models

class UserFactory(factory.django.DjangoModelFactory):
class Meta:

model = models.User

first_name = factory.Sequence(lambda n: "Agent %03d" % n)
group = factory.SubFactory(GroupFactory)

Choosing from a populated table

If the target of the ForeignKey should be chosen from a pre-populated table (e.g django.contrib.
contenttypes.models.ContentType), simply use a factory.Iterator on the chosen queryset:

import factory, factory.django
from . import models

class UserFactory(factory.django.DjangoModelFactory):
class Meta:

model = models.User

language = factory.Iterator(models.Language.objects.all())

Here, models.Language.objects.all()won’t be evaluated until the first call to UserFactory; thus avoid-
ing DB queries at import time.

48 Chapter 5. Contents, indices and tables

http://docs.djangoproject.com/en/dev/ref/models/fields/#django.db.models.ForeignKey
http://docs.djangoproject.com/en/dev/ref/models/instances/#django.db.models.Model
http://docs.djangoproject.com/en/dev/ref/models/fields/#django.db.models.ForeignKey
http://docs.djangoproject.com/en/dev/ref/contrib/contenttypes/#django.contrib.contenttypes.models.ContentType
http://docs.djangoproject.com/en/dev/ref/contrib/contenttypes/#django.contrib.contenttypes.models.ContentType

Factory Boy Documentation, Release 2.6.0

Reverse dependencies (reverse ForeignKey)

When a related object should be created upon object creation (e.g a reverse ForeignKey from another Model), use
a RelatedFactory declaration:

models.py
class User(models.Model):

pass

class UserLog(models.Model):
user = models.ForeignKey(User)
action = models.CharField()

factories.py
class UserFactory(factory.django.DjangoModelFactory):

class Meta:
model = models.User

log = factory.RelatedFactory(UserLogFactory, 'user', action=models.UserLog.ACTION_
→˓CREATE)

When a UserFactory is instantiated, factory_boy will call UserLogFactory(user=that_user,
action=...) just before returning the created User.

Django (<1.5) provided a mechanism to attach a Profile to a User instance, using a OneToOneField from the
Profile to the User.

A typical way to create those profiles was to hook a post-save signal to the User model.

factory_boy allows to define attributes of such profiles dynamically when creating a User:

class ProfileFactory(factory.django.DjangoModelFactory):
class Meta:

model = my_models.Profile

title = 'Dr'
We pass in profile=None to prevent UserFactory from creating another profile
(this disables the RelatedFactory)
user = factory.SubFactory('app.factories.UserFactory', profile=None)

class UserFactory(factory.django.DjangoModelFactory):
class Meta:

model = auth_models.User

username = factory.Sequence(lambda n: "user_%d" % n)

We pass in 'user' to link the generated Profile to our just-generated User
This will call ProfileFactory(user=our_new_user), thus skipping the SubFactory.
profile = factory.RelatedFactory(ProfileFactory, 'user')

@classmethod
def _generate(cls, create, attrs):

"""Override the default _generate() to disable the post-save signal."""

Note: If the signal was defined with a dispatch_uid, include that in both
→˓calls.

post_save.disconnect(handler_create_user_profile, auth_models.User)
user = super(UserFactory, cls)._generate(create, attrs)

5.4. Common recipes 49

http://docs.djangoproject.com/en/dev/ref/models/fields/#django.db.models.ForeignKey
http://docs.djangoproject.com/en/dev/ref/models/instances/#django.db.models.Model
http://docs.djangoproject.com/en/dev/ref/models/fields/#django.db.models.OneToOneField

Factory Boy Documentation, Release 2.6.0

post_save.connect(handler_create_user_profile, auth_models.User)
return user

>>> u = UserFactory(profile__title=u"Lord")
>>> u.get_profile().title
u"Lord"

Such behaviour can be extended to other situations where a signal interferes with factory_boy related factories.

Note: When any RelatedFactory or post_generation attribute is defined on the DjangoModelFactory
subclass, a second save() is performed after the call to _create().

Code working with signals should thus override the _generate() method.

Simple Many-to-many relationship

Building the adequate link between two models depends heavily on the use case; factory_boy doesn’t provide a “all in
one tools” as for SubFactory or RelatedFactory , users will have to craft their own depending on the model.

The base building block for this feature is the post_generation hook:

models.py
class Group(models.Model):

name = models.CharField()

class User(models.Model):
name = models.CharField()
groups = models.ManyToManyField(Group)

factories.py
class GroupFactory(factory.django.DjangoModelFactory):

class Meta:
model = models.Group

name = factory.Sequence(lambda n: "Group #%s" % n)

class UserFactory(factory.django.DjangoModelFactory):
class Meta:

model = models.User

name = "John Doe"

@factory.post_generation
def groups(self, create, extracted, **kwargs):

if not create:
Simple build, do nothing.
return

if extracted:
A list of groups were passed in, use them
for group in extracted:

self.groups.add(group)

When calling UserFactory() or UserFactory.build(), no group binding will be created.

50 Chapter 5. Contents, indices and tables

Factory Boy Documentation, Release 2.6.0

But when UserFactory.create(groups=(group1, group2, group3)) is called, the groups decla-
ration will add passed in groups to the set of groups for the user.

Many-to-many relation with a ‘through’

If only one link is required, this can be simply performed with a RelatedFactory. If more links are needed, simply
add more RelatedFactory declarations:

models.py
class User(models.Model):

name = models.CharField()

class Group(models.Model):
name = models.CharField()
members = models.ManyToManyField(User, through='GroupLevel')

class GroupLevel(models.Model):
user = models.ForeignKey(User)
group = models.ForeignKey(Group)
rank = models.IntegerField()

factories.py
class UserFactory(factory.django.DjangoModelFactory):

class Meta:
model = models.User

name = "John Doe"

class GroupFactory(factory.django.DjangoModelFactory):
class Meta:

model = models.Group

name = "Admins"

class GroupLevelFactory(factory.django.DjangoModelFactory):
class Meta:

model = models.GroupLevel

user = factory.SubFactory(UserFactory)
group = factory.SubFactory(GroupFactory)
rank = 1

class UserWithGroupFactory(UserFactory):
membership = factory.RelatedFactory(GroupLevelFactory, 'user')

class UserWith2GroupsFactory(UserFactory):
membership1 = factory.RelatedFactory(GroupLevelFactory, 'user', group__name=

→˓'Group1')
membership2 = factory.RelatedFactory(GroupLevelFactory, 'user', group__name=

→˓'Group2')

Whenever the UserWithGroupFactory is called, it will, as a post-generation hook, call the
GroupLevelFactory, passing the generated user as a user field:

1. UserWithGroupFactory() generates a User instance, obj

2. It calls GroupLevelFactory(user=obj)

5.4. Common recipes 51

Factory Boy Documentation, Release 2.6.0

3. It returns obj

When using the UserWith2GroupsFactory, that behavior becomes:

1. UserWith2GroupsFactory() generates a User instance, obj

2. It calls GroupLevelFactory(user=obj, group__name='Group1')

3. It calls GroupLevelFactory(user=obj, group__name='Group2')

4. It returns obj

Copying fields to a SubFactory

When a field of a related class should match one of the container:

models.py
class Country(models.Model):

name = models.CharField()
lang = models.CharField()

class User(models.Model):
name = models.CharField()
lang = models.CharField()
country = models.ForeignKey(Country)

class Company(models.Model):
name = models.CharField()
owner = models.ForeignKey(User)
country = models.ForeignKey(Country)

Here, we want:

• The User to have the lang of its country (factory.SelfAttribute('country.lang'))

• The Company owner to live in the country of the company (factory.SelfAttribute('..country'))

factories.py
class CountryFactory(factory.django.DjangoModelFactory):

class Meta:
model = models.Country

name = factory.Iterator(["France", "Italy", "Spain"])
lang = factory.Iterator(['fr', 'it', 'es'])

class UserFactory(factory.django.DjangoModelFactory):
class Meta:

model = models.User

name = "John"
lang = factory.SelfAttribute('country.lang')
country = factory.SubFactory(CountryFactory)

class CompanyFactory(factory.django.DjangoModelFactory):
class Meta:

model = models.Company

name = "ACME, Inc."
country = factory.SubFactory(CountryFactory)
owner = factory.SubFactory(UserFactory, country=factory.SelfAttribute('..country

→˓'))

52 Chapter 5. Contents, indices and tables

Factory Boy Documentation, Release 2.6.0

Custom manager methods

Sometimes you need a factory to call a specific manager method other then the default Model.objects.
create() method:

class UserFactory(factory.DjangoModelFactory):
class Meta:

model = UserenaSignup

username = "l7d8s"
email = "my_name@example.com"
password = "my_password"

@classmethod
def _create(cls, model_class, *args, **kwargs):

"""Override the default ``_create`` with our custom call."""
manager = cls._get_manager(model_class)
The default would use ``manager.create(*args, **kwargs)``
return manager.create_user(*args, **kwargs)

Forcing the sequence counter

A common pattern with factory_boy is to use a factory.Sequence declaration to provide varying values to
attributes declared as unique.

However, it is sometimes useful to force a given value to the counter, for instance to ensure that tests are properly
reproductible.

factory_boy provides a few hooks for this:

Forcing the value on a per-call basis In order to force the counter for a specific Factory instantiation, just pass
the value in the __sequence=42 parameter:

class AccountFactory(factory.Factory):
class Meta:

model = Account
uid = factory.Sequence(lambda n: n)
name = "Test"

>>> obj1 = AccountFactory(name="John Doe", __sequence=10)
>>> obj1.uid # Taken from the __sequence counter
10
>>> obj2 = AccountFactory(name="Jane Doe")
>>> obj2.uid # The base sequence counter hasn't changed
1

Resetting the counter globally If all calls for a factory must start from a deterministic number, use factory.
Factory.reset_sequence(); this will reset the counter to its initial value (as defined by factory.
Factory._setup_next_sequence()).

>>> AccountFactory().uid
1
>>> AccountFactory().uid
2

5.4. Common recipes 53

http://docs.djangoproject.com/en/dev/ref/models/querysets/#django.db.models.query.QuerySet.create
http://docs.djangoproject.com/en/dev/ref/models/querysets/#django.db.models.query.QuerySet.create

Factory Boy Documentation, Release 2.6.0

>>> AccountFactory.reset_sequence()
>>> AccountFactory().uid # Reset to the initial value
1
>>> AccountFactory().uid
2

It is also possible to reset the counter to a specific value:

>>> AccountFactory.reset_sequence(10)
>>> AccountFactory().uid
10
>>> AccountFactory().uid
11

This recipe is most useful in a TestCase‘s setUp() method.

Forcing the initial value for all projects The sequence counter of a Factory can also be set automatically upon the
first call through the _setup_next_sequence() method; this helps when the objects’s attributes mustn’t
conflict with pre-existing data.

A typical example is to ensure that running a Python script twice will create non-conflicting objects, by setting
up the counter to “max used value plus one”:

class AccountFactory(factory.django.DjangoModelFactory):
class Meta:

model = models.Account

@classmethod
def _setup_next_sequence(cls):

try:
return models.Accounts.objects.latest('uid').uid + 1

except models.Account.DoesNotExist:
return 1

>>> Account.objects.create(uid=42, name="Blah")
>>> AccountFactory.create() # Sets up the account number based on the latest uid
<Account uid=43, name=Test>

Fuzzy attributes

Some tests may be interested in testing with fuzzy, random values.

This is handled by the factory.fuzzy module, which provides a few random declarations.

Note: Use import factory.fuzzy to load this module.

FuzzyAttribute

class factory.fuzzy.FuzzyAttribute
The FuzzyAttribute uses an arbitrary callable as fuzzer. It is expected that successive calls of that function
return various values.

54 Chapter 5. Contents, indices and tables

https://docs.python.org/2/library/unittest.html#unittest.TestCase
https://docs.python.org/2/library/unittest.html#unittest.TestCase.setUp

Factory Boy Documentation, Release 2.6.0

fuzzer
The callable that generates random values

FuzzyText

class factory.fuzzy.FuzzyText(length=12, chars=string.ascii_letters, prefix=’‘)
The FuzzyText fuzzer yields random strings beginning with the given prefix, followed by length char-
actes chosen from the chars character set, and ending with the given suffix.

length
int, the length of the random part

prefix
text, an optional prefix to prepend to the random part

suffix
text, an optional suffix to append to the random part

chars

char iterable, the chars to choose from; defaults to the list of ascii letters and numbers.

FuzzyChoice

class factory.fuzzy.FuzzyChoice(choices)
The FuzzyChoice fuzzer yields random choices from the given iterable.

Note: The passed in choices will be converted into a list upon first use, not at declaration time.

This allows passing in, for instance, a Django queryset that will only hit the database during the database, not at
import time.

choices
The list of choices to select randomly

FuzzyInteger

class factory.fuzzy.FuzzyInteger(low[, high[, step]])
The FuzzyInteger fuzzer generates random integers within a given inclusive range.

The low bound may be omitted, in which case it defaults to 0:

>>> fi = FuzzyInteger(0, 42)
>>> fi.low, fi.high
0, 42

>>> fi = FuzzyInteger(42)
>>> fi.low, fi.high
0, 42

low
int, the inclusive lower bound of generated integers

high
int, the inclusive higher bound of generated integers

5.5. Fuzzy attributes 55

Factory Boy Documentation, Release 2.6.0

step
int, the step between values in the range; for instance, a FuzzyInteger(0, 42, step=3)
might only yield values from [0, 3, 6, 9, 12, 15, 18, 21, 24, 27, 30, 33, 36,
39, 42].

FuzzyDecimal

class factory.fuzzy.FuzzyDecimal(low[, high[, precision=2]])
The FuzzyDecimal fuzzer generates random decimals within a given inclusive range.

The low bound may be omitted, in which case it defaults to 0:

>>> FuzzyDecimal(0.5, 42.7)
>>> fi.low, fi.high
0.5, 42.7

>>> fi = FuzzyDecimal(42.7)
>>> fi.low, fi.high
0.0, 42.7

>>> fi = FuzzyDecimal(0.5, 42.7, 3)
>>> fi.low, fi.high, fi.precision
0.5, 42.7, 3

low
decimal, the inclusive lower bound of generated decimals

high
decimal, the inclusive higher bound of generated decimals

precision
int, the number of digits to generate after the dot. The default is 2 digits.

FuzzyFloat

class factory.fuzzy.FuzzyFloat(low[, high])
The FuzzyFloat fuzzer provides random float objects within a given inclusive range.

>>> FuzzyFloat(0.5, 42.7)
>>> fi.low, fi.high
0.5, 42.7

>>> fi = FuzzyFloat(42.7)
>>> fi.low, fi.high
0.0, 42.7

low
decimal, the inclusive lower bound of generated floats

high
decimal, the inclusive higher bound of generated floats

56 Chapter 5. Contents, indices and tables

https://docs.python.org/2/library/decimal.html#decimal.Decimal
https://docs.python.org/2/library/functions.html#float

Factory Boy Documentation, Release 2.6.0

FuzzyDate

class factory.fuzzy.FuzzyDate(start_date[, end_date])
The FuzzyDate fuzzer generates random dates within a given inclusive range.

The end_date bound may be omitted, in which case it defaults to the current date:

>>> fd = FuzzyDate(datetime.date(2008, 1, 1))
>>> fd.start_date, fd.end_date
datetime.date(2008, 1, 1), datetime.date(2013, 4, 16)

start_date
datetime.date, the inclusive lower bound of generated dates

end_date
datetime.date, the inclusive higher bound of generated dates

FuzzyDateTime

class factory.fuzzy.FuzzyDateTime(start_dt[, end_dt], tz=UTC, force_year=None,
force_month=None, force_day=None, force_hour=None,
force_minute=None, force_second=None,
force_microsecond=None)

The FuzzyDateTime fuzzer generates random timezone-aware datetime within a given inclusive range.

The end_dt bound may be omitted, in which case it defaults to datetime.datetime.now() localized
into the UTC timezone.

>>> fdt = FuzzyDateTime(datetime.datetime(2008, 1, 1, tzinfo=UTC))
>>> fdt.start_dt, fdt.end_dt
datetime.datetime(2008, 1, 1, tzinfo=UTC), datetime.datetime(2013, 4, 21, 19, 13,
→˓32, 458487, tzinfo=UTC)

The force_XXX keyword arguments force the related value of generated datetimes:

>>> fdt = FuzzyDateTime(datetime.datetime(2008, 1, 1, tzinfo=UTC), datetime.
→˓datetime(2009, 1, 1, tzinfo=UTC),
... force_day=3, force_second=42)
>>> fdt.evaluate(2, None, False) # Actual code used by ``SomeFactory.build()``
datetime.datetime(2008, 5, 3, 12, 13, 42, 124848, tzinfo=UTC)

start_dt
datetime.datetime, the inclusive lower bound of generated datetimes

end_dt
datetime.datetime, the inclusive upper bound of generated datetimes

force_year
int or None; if set, forces the year of generated datetime.

force_month
int or None; if set, forces the month of generated datetime.

force_day
int or None; if set, forces the day of generated datetime.

force_hour
int or None; if set, forces the hour of generated datetime.

5.5. Fuzzy attributes 57

https://docs.python.org/2/library/datetime.html#datetime.date
https://docs.python.org/2/library/datetime.html#datetime.date
https://docs.python.org/2/library/datetime.html#datetime.datetime
https://docs.python.org/2/library/datetime.html#datetime.datetime
https://docs.python.org/2/library/datetime.html#datetime.datetime.year
https://docs.python.org/2/library/datetime.html#datetime.datetime.month
https://docs.python.org/2/library/datetime.html#datetime.datetime.day
https://docs.python.org/2/library/datetime.html#datetime.datetime.hour

Factory Boy Documentation, Release 2.6.0

force_minute
int or None; if set, forces the minute of generated datetime.

force_second
int or None; if set, forces the second of generated datetime.

force_microsecond
int or None; if set, forces the microsecond of generated datetime.

FuzzyNaiveDateTime

class factory.fuzzy.FuzzyNaiveDateTime(start_dt[, end_dt], force_year=None,
force_month=None, force_day=None,
force_hour=None, force_minute=None,
force_second=None, force_microsecond=None)

The FuzzyNaiveDateTime fuzzer generates random naive datetime within a given inclusive range.

The end_dt bound may be omitted, in which case it defaults to datetime.datetime.now():

>>> fdt = FuzzyNaiveDateTime(datetime.datetime(2008, 1, 1))
>>> fdt.start_dt, fdt.end_dt
datetime.datetime(2008, 1, 1), datetime.datetime(2013, 4, 21, 19, 13, 32, 458487)

The force_XXX keyword arguments force the related value of generated datetimes:

>>> fdt = FuzzyNaiveDateTime(datetime.datetime(2008, 1, 1), datetime.
→˓datetime(2009, 1, 1),
... force_day=3, force_second=42)
>>> fdt.evaluate(2, None, False) # Actual code used by ``SomeFactory.build()``
datetime.datetime(2008, 5, 3, 12, 13, 42, 124848)

start_dt
datetime.datetime, the inclusive lower bound of generated datetimes

end_dt
datetime.datetime, the inclusive upper bound of generated datetimes

force_year
int or None; if set, forces the year of generated datetime.

force_month
int or None; if set, forces the month of generated datetime.

force_day
int or None; if set, forces the day of generated datetime.

force_hour
int or None; if set, forces the hour of generated datetime.

force_minute
int or None; if set, forces the minute of generated datetime.

force_second
int or None; if set, forces the second of generated datetime.

force_microsecond
int or None; if set, forces the microsecond of generated datetime.

58 Chapter 5. Contents, indices and tables

https://docs.python.org/2/library/datetime.html#datetime.datetime.minute
https://docs.python.org/2/library/datetime.html#datetime.datetime.second
https://docs.python.org/2/library/datetime.html#datetime.datetime.microsecond
https://docs.python.org/2/library/datetime.html#datetime.datetime
https://docs.python.org/2/library/datetime.html#datetime.datetime
https://docs.python.org/2/library/datetime.html#datetime.datetime.year
https://docs.python.org/2/library/datetime.html#datetime.datetime.month
https://docs.python.org/2/library/datetime.html#datetime.datetime.day
https://docs.python.org/2/library/datetime.html#datetime.datetime.hour
https://docs.python.org/2/library/datetime.html#datetime.datetime.minute
https://docs.python.org/2/library/datetime.html#datetime.datetime.second
https://docs.python.org/2/library/datetime.html#datetime.datetime.microsecond

Factory Boy Documentation, Release 2.6.0

Custom fuzzy fields

Alternate fuzzy fields may be defined. They should inherit from the BaseFuzzyAttribute class, and override its
fuzz() method.

class factory.fuzzy.BaseFuzzyAttribute
Base class for all fuzzy attributes.

fuzz(self)
The method responsible for generating random values. Must be overridden in subclasses.

Managing randomness

Using random in factories allows to “fuzz” a program efficiently. However, it’s sometimes required to reproduce a
failing test.

factory.fuzzy uses a separate instance of random.Random, and provides a few helpers for this:

factory.fuzzy.get_random_state()
Call get_random_state() to retrieve the random generator’s current state.

factory.fuzzy.set_random_state(state)
Use set_random_state() to set a custom state into the random generator (fetched from
get_random_state() in a previous run, for instance)

factory.fuzzy.reseed_random(seed)
The reseed_random() function allows to load a chosen seed into the random generator.

Custom BaseFuzzyAttribute subclasses SHOULD use factory.fuzzy._random as a randomness source;
this ensures that data they generate can be regenerated using the simple state from get_random_state().

Examples

Here are some real-world examples of using FactoryBoy.

Objects

First, let’s define a couple of objects:

class Account(object):
def __init__(self, username, email):

self.username = username
self.email = email

def __str__(self):
return '%s (%s)' % (self.username, self.email)

class Profile(object):

GENDER_MALE = 'm'
GENDER_FEMALE = 'f'
GENDER_UNKNOWN = 'u' # If the user refused to give it

def __init__(self, account, gender, firstname, lastname, planet='Earth'):

5.6. Examples 59

https://docs.python.org/2/library/random.html#module-random

Factory Boy Documentation, Release 2.6.0

self.account = account
self.gender = gender
self.firstname = firstname
self.lastname = lastname
self.planet = planet

def __unicode__(self):
return u'%s %s (%s)' % (

unicode(self.firstname),
unicode(self.lastname),
unicode(self.account.accountname),

)

Factories

And now, we’ll define the related factories:

import factory
import random

from . import objects

class AccountFactory(factory.Factory):
class Meta:

model = objects.Account

username = factory.Sequence(lambda n: 'john%s' % n)
email = factory.LazyAttribute(lambda o: '%s@example.org' % o.username)

class ProfileFactory(factory.Factory):
class Meta:

model = objects.Profile

account = factory.SubFactory(AccountFactory)
gender = factory.Iterator([objects.Profile.GENDER_MALE, objects.Profile.GENDER_

→˓FEMALE])
firstname = u'John'
lastname = u'Doe'

We have now defined basic factories for our Account and Profile classes.

If we commonly use a specific variant of our objects, we can refine a factory accordingly:

class FemaleProfileFactory(ProfileFactory):
gender = objects.Profile.GENDER_FEMALE
firstname = u'Jane'
user__username = factory.Sequence(lambda n: 'jane%s' % n)

Using the factories

We can now use our factories, for tests:

60 Chapter 5. Contents, indices and tables

Factory Boy Documentation, Release 2.6.0

import unittest

from . import business_logic
from . import factories
from . import objects

class MyTestCase(unittest.TestCase):

def test_send_mail(self):
account = factories.AccountFactory()
email = business_logic.prepare_email(account, subject='Foo', text='Bar')

self.assertEqual(email.to, account.email)

def test_get_profile_stats(self):
profiles = []

profiles.extend(factories.ProfileFactory.create_batch(4))
profiles.extend(factories.FemaleProfileFactory.create_batch(2))
profiles.extend(factories.ProfileFactory.create_batch(2, planet="Tatooine"))

stats = business_logic.profile_stats(profiles)
self.assertEqual({'Earth': 6, 'Mars': 2}, stats.planets)
self.assertLess(stats.genders[objects.Profile.GENDER_FEMALE], 2)

Or for fixtures:

from . import factories

def make_objects():
factories.ProfileFactory.create_batch(size=50)

Let's create a few, known objects.
factories.ProfileFactory(

gender=objects.Profile.GENDER_MALE,
firstname='Luke',
lastname='Skywalker',
planet='Tatooine',

)

factories.ProfileFactory(
gender=objects.Profile.GENDER_FEMALE,
firstname='Leia',
lastname='Organa',
planet='Alderaan',

)

5.6. Examples 61

Factory Boy Documentation, Release 2.6.0

Internals

ChangeLog

2.6.0 (XXXX-XX-XX)

New:

• Add factory.FactoryOptions.rename to help handle conflicting names (issue #206)

• Add support for random-yet-realistic values through fake-factory, through the factory.Faker class.

• factory.Iterator no longer begins iteration of its argument at import time, thus allowing to pass in a lazy
iterator such as a Django queryset (i.e factory.Iterator(models.MyThingy.objects.all())).

• Simplify imports for ORM layers, now available through a simple factory import, at factory.
alchemy.SQLAlchemyModelFactory / factory.django.DjangoModelFactory / factory.
mongoengine.MongoEngineFactory.

Bugfix:

• issue #201: Properly handle custom Django managers when dealing with abstract Django models.

• issue #212: Fix factory.django.mute_signals() to handle Django’s signal caching

• issue #228: Don’t load django.apps.apps.get_model() until required

• issue #219: Stop using mogo.model.Model.new(), deprecated 4 years ago.

2.5.2 (2015-04-21)

Bugfix:

• Add support for Django 1.7/1.8

• Add support for mongoengine>=0.9.0 / pymongo>=2.1

2.5.1 (2015-03-27)

Bugfix:

• Respect custom managers in DjangoModelFactory (see issue #192)

• Allow passing declarations (e.g Sequence) as parameters to FileField and ImageField.

2.5.0 (2015-03-26)

New:

• Add support for getting/setting factory.fuzzy‘s random state (see issue #175, issue #185).

• Support lazy evaluation of iterables in factory.fuzzy.FuzzyChoice (see issue #184).

• Support non-default databases at the factory level (see issue #171)

• Make factory.django.FileField and factory.django.ImageField non-post_generation, i.e
normal fields also available in save() (see issue #141).

Bugfix:

62 Chapter 5. Contents, indices and tables

https://github.com/rbarrois/factory_boy/issues/206
https://pypi.python.org/pypi/fake-factory
https://github.com/rbarrois/factory_boy/issues/201
https://github.com/rbarrois/factory_boy/issues/212
https://github.com/rbarrois/factory_boy/issues/228
https://github.com/rbarrois/factory_boy/issues/219
https://github.com/rbarrois/factory_boy/issues/192
https://github.com/rbarrois/factory_boy/issues/175
https://github.com/rbarrois/factory_boy/issues/185
https://github.com/rbarrois/factory_boy/issues/184
https://github.com/rbarrois/factory_boy/issues/171
https://github.com/rbarrois/factory_boy/issues/141

Factory Boy Documentation, Release 2.6.0

• Avoid issues when using factory.django.mute_signals() on a base factory class (see issue #183).

• Fix limitations of factory.StubFactory , that can now use factory.SubFactory and co (see issue
#131).

Deprecation:

• Remove deprecated features from 2.4.0 (2014-06-21)

• Remove the auto-magical sequence setup (based on the latest primary key value in the database) for Django and
SQLAlchemy; this relates to issues issue #170, issue #153, issue #111, issue #103, issue #92, issue #78. See
https://github.com/rbarrois/factory_boy/commit/13d310f for technical details.

Warning: Version 2.5.0 removes the ‘auto-magical sequence setup’ bug-and-feature. This could trigger some
bugs when tests expected a non-zero sequence reference.

Upgrading

Warning: Version 2.5.0 removes features that were marked as deprecated in v2.4.0.

All FACTORY_*-style attributes are now declared in a class Meta: section:

Old-style, deprecated
class MyFactory(factory.Factory):

FACTORY_FOR = models.MyModel
FACTORY_HIDDEN_ARGS = ['a', 'b', 'c']

New-style
class MyFactory(factory.Factory):

class Meta:
model = models.MyModel
exclude = ['a', 'b', 'c']

A simple shell command to upgrade the code would be:

sed -i: inplace update
grep -l: only file names, not matching lines
sed -i 's/FACTORY_FOR =/class Meta:\n model =/' $(grep -l FACTORY_FOR $(find .
→˓-name '*.py'))

This takes care of all FACTORY_FOR occurences; the files containing other attributes to rename can be found with
grep -R FACTORY .

2.4.1 (2014-06-23)

Bugfix:

• Fix overriding deeply inherited attributes (set in one factory, overridden in a subclass, used in a sub-sub-class).

2.4.0 (2014-06-21)

New:

5.8. ChangeLog 63

https://github.com/rbarrois/factory_boy/issues/183
https://github.com/rbarrois/factory_boy/issues/131
https://github.com/rbarrois/factory_boy/issues/131
https://github.com/rbarrois/factory_boy/issues/170
https://github.com/rbarrois/factory_boy/issues/153
https://github.com/rbarrois/factory_boy/issues/111
https://github.com/rbarrois/factory_boy/issues/103
https://github.com/rbarrois/factory_boy/issues/92
https://github.com/rbarrois/factory_boy/issues/78
https://github.com/rbarrois/factory_boy/commit/13d310f

Factory Boy Documentation, Release 2.6.0

• Add support for factory.fuzzy.FuzzyInteger.step, thanks to ilya-pirogov (issue #120)

• Add mute_signals() decorator to temporarily disable some signals, thanks to ilya-pirogov (issue #122)

• Add FuzzyFloat (issue #124)

• Declare target model and other non-declaration fields in a class Meta section.

Deprecation:

• Use of FACTORY_FOR and other FACTORY class-level attributes is deprecated and will be removed in 2.5.
Those attributes should now declared within the class Meta attribute:

For factory.Factory:

– Rename FACTORY_FOR to model

– Rename FACTORY_FOR to model

– Rename ABSTRACT_FACTORY to abstract

– Rename FACTORY_STRATEGY to strategy

– Rename FACTORY_ARG_PARAMETERS to inline_args

– Rename FACTORY_HIDDEN_ARGS to exclude

For factory.django.DjangoModelFactory:

– Rename FACTORY_DJANGO_GET_OR_CREATE to django_get_or_create

For factory.alchemy.SQLAlchemyModelFactory:

– Rename FACTORY_SESSION to sqlalchemy_session

2.3.1 (2014-01-22)

Bugfix:

• Fix badly written assert containing state-changing code, spotted by chsigi (issue #126)

• Don’t crash when handling objects whose __repr__ is non-pure-ascii bytes on Py2, discovered by mbertheau
(issue #123) and strycore (issue #127)

2.3.0 (2013-12-25)

New:

• Add FuzzyText, thanks to jdufresne (issue #97)

• Add FuzzyDecimal, thanks to thedrow (issue #94)

• Add support for EmbeddedDocument, thanks to imiric (issue #100)

2.2.1 (2013-09-24)

Bugfix:

• Fixed sequence counter for DjangoModelFactory when a factory inherits from another factory relating to
an abstract model.

64 Chapter 5. Contents, indices and tables

https://github.com/ilya-pirogov
https://github.com/rbarrois/factory_boy/issues/120
https://github.com/ilya-pirogov
https://github.com/rbarrois/factory_boy/issues/122
https://github.com/rbarrois/factory_boy/issues/124
https://github.com/chsigi
https://github.com/rbarrois/factory_boy/issues/126
https://github.com/mbertheau
https://github.com/rbarrois/factory_boy/issues/123
https://github.com/strycore
https://github.com/rbarrois/factory_boy/issues/127
https://github.com/jdufresne
https://github.com/rbarrois/factory_boy/issues/97
https://github.com/thedrow
https://github.com/rbarrois/factory_boy/issues/94
https://github.com/imiric
https://github.com/rbarrois/factory_boy/issues/100

Factory Boy Documentation, Release 2.6.0

2.2.0 (2013-09-24)

Bugfix:

• Removed duplicated SQLAlchemyModelFactory lurking in factory (issue #83)

• Properly handle sequences within object inheritance chains. If FactoryA inherits from FactoryB, and their
associated classes share the same link, sequence counters will be shared (issue #93)

• Properly handle nested SubFactory overrides

New:

• The DjangoModelFactory now supports the FACTORY_FOR = 'myapp.MyModel' syntax, making it
easier to shove all factories in a single module (issue #66).

• Add factory.debug() helper for easier backtrace analysis

• Adding factory support for mongoengine with MongoEngineFactory .

2.1.2 (2013-08-14)

New:

• The ABSTRACT_FACTORY keyword is now optional, and automatically set to True if neither the Factory
subclass nor its parent declare the FACTORY_FOR attribute (issue #74)

2.1.1 (2013-07-02)

Bugfix:

• Properly retrieve the color keyword argument passed to ImageField

2.1.0 (2013-06-26)

New:

• Add FuzzyDate thanks to saulshanabrook

• Add FuzzyDateTime and FuzzyNaiveDateTime.

• Add a factory_parent attribute to the LazyStub passed to LazyAttribute, in order to access fields
defined in wrapping factories.

• Move DjangoModelFactory and MogoFactory to their own modules (factory.django and
factory.mogo)

• Add the reset_sequence() classmethod to Factory to ease resetting the sequence counter for a given
factory.

• Add debug messages to factory logger.

• Add a reset() method to Iterator (issue #63)

• Add support for the SQLAlchemy ORM through SQLAlchemyModelFactory (issue #64, thanks to Romain
Commandé)

• Add factory.django.FileField and factory.django.ImageField hooks for related Django
model fields (issue #52)

Bugfix

5.8. ChangeLog 65

https://github.com/rbarrois/factory_boy/issues/83
https://github.com/rbarrois/factory_boy/issues/93
https://github.com/rbarrois/factory_boy/issues/66
https://github.com/rbarrois/factory_boy/issues/74
https://github.com/saulshanabrook
https://github.com/rbarrois/factory_boy/issues/63
https://github.com/rbarrois/factory_boy/issues/64
https://github.com/rcommande
https://github.com/rcommande
https://github.com/rbarrois/factory_boy/issues/52

Factory Boy Documentation, Release 2.6.0

• Properly handle non-integer pks in DjangoModelFactory (issue #57).

• Disable RelatedFactory generation when a specific value was passed (issue #62, thanks to Gabe Koscky)

Deprecation:

• Rename RelatedFactory‘s name argument to factory_related_name (See issue #58)

2.0.2 (2013-04-16)

New:

• When FACTORY_DJANGO_GET_OR_CREATE is empty, use Model.objects.create() instead of
Model.objects.get_or_create.

2.0.1 (2013-04-16)

New:

• Don’t push defaults to get_or_create when FACTORY_DJANGO_GET_OR_CREATE is not set.

2.0.0 (2013-04-15)

New:

• Allow overriding the base factory class for make_factory() and friends.

• Add support for Python3 (Thanks to kmike and nkryptic)

• The default type for Sequence is now int

• Fields listed in FACTORY_HIDDEN_ARGS won’t be passed to the associated class’ constructor

• Add support for get_or_create in DjangoModelFactory , through
FACTORY_DJANGO_GET_OR_CREATE.

• Add support for fuzzy attribute definitions.

• The Sequence counter can be overridden when calling a generating function

• Add Dict and List declarations (Closes issue #18).

Removed:

• Remove associated class discovery

• Remove InfiniteIterator and infinite_iterator()

• Remove CircularSubFactory

• Remove extract_prefix kwarg to post-generation hooks.

• Stop defaulting to Django’s Foo.objects.create() when “creating” instances

• Remove STRATEGY_*

• Remove set_building_function() / set_creation_function()

66 Chapter 5. Contents, indices and tables

https://github.com/rbarrois/factory_boy/issues/57
https://github.com/rbarrois/factory_boy/issues/62
https://github.com/dhekke
https://github.com/rbarrois/factory_boy/issues/58
https://github.com/kmike
https://github.com/nkryptic
https://docs.python.org/2/library/functions.html#int
https://github.com/rbarrois/factory_boy/issues/18

Factory Boy Documentation, Release 2.6.0

1.3.0 (2013-03-11)

Warning: This version deprecates many magic or unexplicit features that will be removed in v2.0.0.

Please read the Upgrading section, then run your tests with python -W default to see all remaining warnings.

New

• Global:

– Rewrite the whole documentation

– Provide a dedicated MogoFactory subclass of Factory

• The Factory class:

– Better creation/building customization hooks at factory.Factory._build() and factory.
Factory.create()

– Add support for passing non-kwarg parameters to a Factory wrapped class through
FACTORY_ARG_PARAMETERS.

– Keep the FACTORY_FOR attribute in Factory classes

• Declarations:

– Allow SubFactory to solve circular dependencies between factories

– Enhance SelfAttribute to handle “container” attribute fetching

– Add a getter to Iterator declarations

– A Iterator may be prevented from cycling by setting its cycle argument to False

– Allow overriding default arguments in a PostGenerationMethodCall when generating an in-
stance of the factory

– An object created by a DjangoModelFactory will be saved again after PostGeneration
hooks execution

Pending deprecation

The following features have been deprecated and will be removed in an upcoming release.

• Declarations:

– InfiniteIterator is deprecated in favor of Iterator

– CircularSubFactory is deprecated in favor of SubFactory

– The extract_prefix argument to post_generation() is now deprecated

• Factory:

– Usage of set_creation_function() and set_building_function() are now depre-
cated

– Implicit associated class discovery is no longer supported, you must set the FACTORY_FOR attribute
on all Factory subclasses

5.8. ChangeLog 67

Factory Boy Documentation, Release 2.6.0

Upgrading

This version deprecates a few magic or undocumented features. All warnings will turn into errors starting from v2.0.0.

In order to upgrade client code, apply the following rules:

• Add a FACTORY_FOR attribute pointing to the target class to each Factory , instead of relying on automagic
associated class discovery

• When using factory_boy for Django models, have each factory inherit from DjangoModelFactory

• Replace factory.CircularSubFactory('some.module', 'Symbol') with factory.
SubFactory('some.module.Symbol')

• Replace factory.InfiniteIterator(iterable) with factory.Iterator(iterable)

• Replace @factory.post_generation() with @factory.post_generation

• Replace factory.set_building_function(SomeFactory, building_function) with an
override of the _build() method of SomeFactory

• Replace factory.set_creation_function(SomeFactory, creation_function) with an
override of the _create() method of SomeFactory

1.2.0 (2012-09-08)

New:

• Add CircularSubFactory to solve circular dependencies between factories

1.1.5 (2012-07-09)

Bugfix:

• Fix PostGenerationDeclaration and derived classes.

1.1.4 (2012-06-19)

New:

• Add use_strategy() decorator to override a Factory‘s default strategy

• Improve test running (tox, python2.6/2.7)

• Introduce PostGeneration and RelatedFactory

1.1.3 (2012-03-09)

Bugfix:

• Fix packaging rules

68 Chapter 5. Contents, indices and tables

Factory Boy Documentation, Release 2.6.0

1.1.2 (2012-02-25)

New:

• Add Iterator and InfiniteIterator for Factory attribute declarations.

• Provide generate() and simple_generate(), that allow specifying the instantiation strategy directly.
Also provides generate_batch() and simple_generate_batch().

1.1.1 (2012-02-24)

New:

• Add build_batch(), create_batch() and stub_batch(), to instantiate factories in batch

1.1.0 (2012-02-24)

New:

• Improve the SelfAttribute syntax to fetch sub-attributes using the foo.bar syntax;

• Add ContainerAttribute to fetch attributes from the container of a SubFactory .

• Provide the make_factory() helper: MyClassFactory = make_factory(MyClass, x=3,
y=4)

• Add build(), create(), stub() helpers

Bugfix:

• Allow classmethod/staticmethod on factories

Deprecation:

• Auto-discovery of FACTORY_FOR based on class name is now deprecated

1.0.4 (2011-12-21)

New:

• Improve the algorithm for populating a Factory attributes dict

• Add python setup.py test command to run the test suite

• Allow custom build functions

• Introduce MOGO_BUILD build function

• Add support for inheriting from multiple Factory

• Base Factory classes can now be declared abstract.

• Provide DjangoModelFactory , whose Sequence counter starts at the next free database id

• Introduce SelfAttribute, a shortcut for factory.LazyAttribute(lambda o: o.foo.bar.
baz.

Bugfix:

• Handle nested SubFactory

• Share sequence counter between parent and subclasses

5.8. ChangeLog 69

Factory Boy Documentation, Release 2.6.0

• Fix SubFactory / Sequence interferences

1.0.2 (2011-05-16)

New:

• Introduce SubFactory

1.0.1 (2011-05-13)

New:

• Allow Factory inheritance

• Improve handling of custom build/create functions

Bugfix:

• Fix concurrency between LazyAttribute and Sequence

1.0.0 (2010-08-22)

New:

• First version of factory_boy

Credits

• Initial version by Mark Sandstrom (2010)

• Developed by Raphaël Barrois since 2011

Ideas

This is a list of future features that may be incorporated into factory_boy:

• When a Factory is built or created, pass the calling context throughout the calling chain instead of custom
solutions everywhere

• Define a proper set of rules for the support of third-party ORMs

• Properly evaluate nested declarations (e.g factory.fuzzy.FuzzyDate(start_date=factory.
SelfAttribute('since')))

• genindex

• modindex

• search

70 Chapter 5. Contents, indices and tables

Python Module Index

f
factory.fuzzy, 54

71

Factory Boy Documentation, Release 2.6.0

72 Python Module Index

Index

Symbols
__init__() (factory.django.FileField method), 42
__init__() (factory.django.ImageField method), 43
_adjust_kwargs() (factory.Factory class method), 20
_after_postgeneration() (factory.Factory class method),

20
_build() (factory.Factory class method), 20
_create() (factory.Factory class method), 20
_meta (factory.Factory attribute), 19
_options_class (factory.Factory attribute), 19
_setup_next_sequence() (factory.Factory class method),

20

A
abstract (factory.FactoryOptions attribute), 17
add_provider() (factory.Faker class method), 23
args (factory.PostGenerationMethodCall attribute), 37

B
BaseFuzzyAttribute (class in factory.fuzzy), 59
build() (factory.Factory class method), 19
build() (in module factory), 39
build_batch() (factory.Factory class method), 19
build_batch() (in module factory), 39
BUILD_STRATEGY (in module factory), 21

C
chars (factory.fuzzy.FuzzyText attribute), 55
choices (factory.fuzzy.FuzzyChoice attribute), 55
create() (factory.Factory class method), 19
create() (in module factory), 40
create_batch() (factory.Factory class method), 19
create_batch() (in module factory), 40
CREATE_STRATEGY (in module factory), 21
cycle (factory.Iterator attribute), 31

D
database (factory.django.DjangoOptions attribute), 41
debug() (in module factory), 22

Dict (class in factory), 33
dict_factory (factory.Dict attribute), 33
django_get_or_create (factory.django.DjangoOptions at-

tribute), 41
DjangoModelFactory (class in factory.django), 41
DjangoOptions (class in factory.django), 41

E
end_date (factory.fuzzy.FuzzyDate attribute), 57
end_dt (factory.fuzzy.FuzzyDateTime attribute), 57
end_dt (factory.fuzzy.FuzzyNaiveDateTime attribute), 58
exclude (factory.FactoryOptions attribute), 18

F
Factory (class in factory), 19
factory (factory.RelatedFactory attribute), 35
factory.fuzzy (module), 54
FactoryOptions (class in factory), 17
Faker (class in factory), 23
FileField (class in factory.django), 42
force_day (factory.fuzzy.FuzzyDateTime attribute), 57
force_day (factory.fuzzy.FuzzyNaiveDateTime attribute),

58
force_hour (factory.fuzzy.FuzzyDateTime attribute), 57
force_hour (factory.fuzzy.FuzzyNaiveDateTime at-

tribute), 58
force_microsecond (factory.fuzzy.FuzzyDateTime

attribute), 58
force_microsecond (factory.fuzzy.FuzzyNaiveDateTime

attribute), 58
force_minute (factory.fuzzy.FuzzyDateTime attribute), 57
force_minute (factory.fuzzy.FuzzyNaiveDateTime

attribute), 58
force_month (factory.fuzzy.FuzzyDateTime attribute), 57
force_month (factory.fuzzy.FuzzyNaiveDateTime at-

tribute), 58
force_second (factory.fuzzy.FuzzyDateTime attribute), 58
force_second (factory.fuzzy.FuzzyNaiveDateTime

attribute), 58

73

Factory Boy Documentation, Release 2.6.0

force_year (factory.fuzzy.FuzzyDateTime attribute), 57
force_year (factory.fuzzy.FuzzyNaiveDateTime at-

tribute), 58
fuzz() (factory.fuzzy.BaseFuzzyAttribute method), 59
fuzzer (factory.fuzzy.FuzzyAttribute attribute), 54
FuzzyAttribute (class in factory.fuzzy), 54
FuzzyChoice (class in factory.fuzzy), 55
FuzzyDate (class in factory.fuzzy), 57
FuzzyDateTime (class in factory.fuzzy), 57
FuzzyDecimal (class in factory.fuzzy), 56
FuzzyFloat (class in factory.fuzzy), 56
FuzzyInteger (class in factory.fuzzy), 55
FuzzyNaiveDateTime (class in factory.fuzzy), 58
FuzzyText (class in factory.fuzzy), 55

G
generate() (factory.Factory class method), 19
generate() (in module factory), 40
generate_batch() (factory.Factory class method), 20
generate_batch() (in module factory), 40
get_random_state() (in module factory.fuzzy), 59
getter (factory.Iterator attribute), 31

H
high (factory.fuzzy.FuzzyDecimal attribute), 56
high (factory.fuzzy.FuzzyFloat attribute), 56
high (factory.fuzzy.FuzzyInteger attribute), 55

I
ImageField (class in factory.django), 43
inline_args (factory.FactoryOptions attribute), 18
Iterator (class in factory), 31
iterator() (in module factory), 32

K
kwargs (factory.PostGenerationMethodCall attribute), 37

L
lazy_attribute() (in module factory), 24
lazy_attribute_sequence() (in module factory), 27
LazyAttribute (class in factory), 24
LazyAttributeSequence (class in factory), 27
length (factory.fuzzy.FuzzyText attribute), 55
List (class in factory), 33
list_factory (factory.List attribute), 34
locale (factory.Faker attribute), 23
low (factory.fuzzy.FuzzyDecimal attribute), 56
low (factory.fuzzy.FuzzyFloat attribute), 56
low (factory.fuzzy.FuzzyInteger attribute), 55

M
make_factory() (in module factory), 39

method_name (factory.PostGenerationMethodCall
attribute), 37

model (factory.FactoryOptions attribute), 17
MogoFactory (class in factory.mogo), 44
MongoEngineFactory (class in factory.mongoengine), 44
mute_signals() (in module factory.django), 44

N
name (factory.RelatedFactory attribute), 35

O
override_default_locale() (factory.Faker class method),

23

P
post_generation() (in module factory), 36
PostGeneration (class in factory), 36
PostGenerationMethodCall (class in factory), 37
precision (factory.fuzzy.FuzzyDecimal attribute), 56
prefix (factory.fuzzy.FuzzyText attribute), 55

R
RelatedFactory (class in factory), 35
rename (factory.FactoryOptions attribute), 18
reseed_random() (in module factory.fuzzy), 59
reset() (factory.Iterator method), 31
reset_sequence() (factory.Factory class method), 21

S
SelfAttribute (class in factory), 30
Sequence (class in factory), 25
sequence() (in module factory), 25
set_random_state() (in module factory.fuzzy), 59
simple_generate() (factory.Factory class method), 20
simple_generate() (in module factory), 40
simple_generate_batch() (factory.Factory class method),

20
simple_generate_batch() (in module factory), 40
sqlalchemy_session (fac-

tory.alchemy.SQLAlchemyOptions attribute),
45

SQLAlchemyModelFactory (class in factory.alchemy),
45

SQLAlchemyOptions (class in factory.alchemy), 45
start_date (factory.fuzzy.FuzzyDate attribute), 57
start_dt (factory.fuzzy.FuzzyDateTime attribute), 57
start_dt (factory.fuzzy.FuzzyNaiveDateTime attribute), 58
step (factory.fuzzy.FuzzyInteger attribute), 55
strategy (factory.FactoryOptions attribute), 19
stub() (factory.Factory class method), 19
stub() (in module factory), 40
stub_batch() (factory.Factory class method), 19
stub_batch() (in module factory), 40

74 Index

Factory Boy Documentation, Release 2.6.0

STUB_STRATEGY (in module factory), 22
StubFactory (class in factory), 22
StubObject (class in factory), 22
SubFactory (class in factory), 28
suffix (factory.fuzzy.FuzzyText attribute), 55

U
use_strategy() (in module factory), 22

Index 75

	Links
	Download
	Usage
	Defining factories
	Using factories
	Realistic, random values
	Lazy Attributes
	Sequences
	Associations
	Debugging factory_boy
	ORM Support

	Contributing
	Contents, indices and tables
	Introduction
	Reference
	Using factory_boy with ORMs
	Common recipes
	Fuzzy attributes
	Examples
	Internals
	ChangeLog
	Ideas

	Python Module Index

